These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
435 related articles for article (PubMed ID: 8190087)
1. Molecular cloning of a maltose transport gene from Bacillus stearothermophilus and its expression in Escherichia coli K-12. Liong EC; Ferenci T Mol Gen Genet; 1994 May; 243(3):343-52. PubMed ID: 8190087 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the structural requirements for assembly and nucleotide binding of an ATP-binding cassette transporter. The maltose transport system of Escherichia coli. Panagiotidis CH; Reyes M; Sievertsen A; Boos W; Shuman HA J Biol Chem; 1993 Nov; 268(31):23685-96. PubMed ID: 8226895 [TBL] [Abstract][Full Text] [Related]
3. Archaeal binding protein-dependent ABC transporter: molecular and biochemical analysis of the trehalose/maltose transport system of the hyperthermophilic archaeon Thermococcus litoralis. Horlacher R; Xavier KB; Santos H; DiRuggiero J; Kossmann M; Boos W J Bacteriol; 1998 Feb; 180(3):680-9. PubMed ID: 9457875 [TBL] [Abstract][Full Text] [Related]
4. Mutation of a single MalK subunit severely impairs maltose transport activity in Escherichia coli. Davidson AL; Sharma S J Bacteriol; 1997 Sep; 179(17):5458-64. PubMed ID: 9287001 [TBL] [Abstract][Full Text] [Related]
5. Allele-specific malE mutations that restore interactions between maltose-binding protein and the inner-membrane components of the maltose transport system. Treptow NA; Shuman HA J Mol Biol; 1988 Aug; 202(4):809-22. PubMed ID: 3050132 [TBL] [Abstract][Full Text] [Related]
6. Maltose and maltodextrin transport in the thermoacidophilic gram-positive bacterium Alicyclobacillus acidocaldarius is mediated by a high-affinity transport system that includes a maltose binding protein tolerant to low pH. Hülsmann A; Lurz R; Scheffel F; Schneider E J Bacteriol; 2000 Nov; 182(22):6292-301. PubMed ID: 11053372 [TBL] [Abstract][Full Text] [Related]
7. Truncation of MalF results in lactose transport via the maltose transport system of Escherichia coli. Merino G; Shuman HA J Biol Chem; 1998 Jan; 273(4):2435-44. PubMed ID: 9442094 [TBL] [Abstract][Full Text] [Related]
8. Mutations that alter the transmembrane signalling pathway in an ATP binding cassette (ABC) transporter. Covitz KM; Panagiotidis CH; Hor LI; Reyes M; Treptow NA; Shuman HA EMBO J; 1994 Apr; 13(7):1752-9. PubMed ID: 8157012 [TBL] [Abstract][Full Text] [Related]
9. Exploring the role of integral membrane proteins in ATP-binding cassette transporters: analysis of a collection of MalG insertion mutants. Nelson BD; Traxler B J Bacteriol; 1998 May; 180(9):2507-14. PubMed ID: 9573205 [TBL] [Abstract][Full Text] [Related]
10. Structure of the maltodextrin-uptake locus of Streptococcus pneumoniae. Correlation to the Escherichia coli maltose regulon. Puyet A; Espinosa M J Mol Biol; 1993 Apr; 230(3):800-11. PubMed ID: 8478935 [TBL] [Abstract][Full Text] [Related]
11. Subunit interactions in ABC transporters: a conserved sequence in hydrophobic membrane proteins of periplasmic permeases defines an important site of interaction with the ATPase subunits. Mourez M; Hofnung M; Dassa E EMBO J; 1997 Jun; 16(11):3066-77. PubMed ID: 9214624 [TBL] [Abstract][Full Text] [Related]
12. A putative helical domain in the MalK subunit of the ATP-binding-cassette transport system for maltose of Salmonella typhimurium (MalFGK2) is crucial for interaction with MalF and MalG. A study using the LacK protein of Agrobacterium radiobacter as a tool. Wilken S; Schmees G; Schneider E Mol Microbiol; 1996 Nov; 22(4):655-66. PubMed ID: 8951813 [TBL] [Abstract][Full Text] [Related]
13. Mutations which alter the function of the signal sequence of the maltose binding protein of Escherichia coli. Bedouelle H; Bassford PJ; Fowler AV; Zabin I; Beckwith J; Hofnung M Nature; 1980 May; 285(5760):78-81. PubMed ID: 6990274 [TBL] [Abstract][Full Text] [Related]
14. Extensive homology between membrane-associated components of histidine and maltose transport systems of Salmonella typhimurium and Escherichia coli. Gilson E; Higgins CF; Hofnung M; Ferro-Luzzi Ames G; Nikaido H J Biol Chem; 1982 Sep; 257(17):9915-8. PubMed ID: 7050111 [TBL] [Abstract][Full Text] [Related]
15. Genetic analysis of periplasmic binding protein dependent transport in Escherichia coli. Each lobe of maltose-binding protein interacts with a different subunit of the MalFGK2 membrane transport complex. Hor LI; Shuman HA J Mol Biol; 1993 Oct; 233(4):659-70. PubMed ID: 8411172 [TBL] [Abstract][Full Text] [Related]
16. MalFGK complex assembly and transport and regulatory characteristics of MalK insertion mutants. Lippincott J; Traxler B J Bacteriol; 1997 Feb; 179(4):1337-43. PubMed ID: 9023220 [TBL] [Abstract][Full Text] [Related]
17. Sequence-function relationships in MalG, an inner membrane protein from the maltose transport system in Escherichia coli. Dassa E Mol Microbiol; 1993 Jan; 7(1):39-47. PubMed ID: 8437519 [TBL] [Abstract][Full Text] [Related]
18. Unliganded maltose-binding protein triggers lactose transport in an Escherichia coli mutant with an alteration in the maltose transport system. Merino G; Shuman HA J Bacteriol; 1997 Dec; 179(24):7687-94. PubMed ID: 9401026 [TBL] [Abstract][Full Text] [Related]
19. Genetic evidence for substrate and periplasmic-binding-protein recognition by the MalF and MalG proteins, cytoplasmic membrane components of the Escherichia coli maltose transport system. Treptow NA; Shuman HA J Bacteriol; 1985 Aug; 163(2):654-60. PubMed ID: 3894331 [TBL] [Abstract][Full Text] [Related]
20. A second ABC transporter is involved in oleandomycin resistance and its secretion by Streptomyces antibioticus. Olano C; Rodríguez AM; Méndez C; Salas JA Mol Microbiol; 1995 Apr; 16(2):333-43. PubMed ID: 7565095 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]