These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 819034)

  • 21. Involvement of cellular division cycle in the susceptibility of Escherichia coli to cold- and osmotic-shock.
    Hodgson A; Evans DJ; Brown MR; Gilbert P
    Microbios; 1992; 72(292-293):175-82. PubMed ID: 1488019
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The reduction and restoration of galactose transport in osmotically shocked cells of Escherichia coli.
    Anraku Y
    J Biol Chem; 1967 Mar; 242(5):793-800. PubMed ID: 4960161
    [No Abstract]   [Full Text] [Related]  

  • 23. Increased resistance of Escherichia coli to acrylic acid and to copper ions after cold-shock.
    Whiting GC; Rowbury RJ
    Lett Appl Microbiol; 1995 Apr; 20(4):240-2. PubMed ID: 7766119
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Interrelation of DNA replication, specific growth rate and growth temperature in the sensitivity of Escherichia coli to cold shock.
    Gilbert P; Dickinson NA; Brown MR
    J Gen Microbiol; 1979 Nov; 115(1):89-94. PubMed ID: 393799
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of heat shock protein DnaK in osmotic adaptation of Escherichia coli.
    Meury J; Kohiyama M
    J Bacteriol; 1991 Jul; 173(14):4404-10. PubMed ID: 2066337
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Uptake of N-acetylneuraminic acid by Escherichia coli K-235. Biochemical characterization of the transport system.
    Rodríguez-Aparicio LB; Reglero A; Luengo JM
    Biochem J; 1987 Sep; 246(2):287-94. PubMed ID: 2825630
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phosphate exchange in the pit transport system in Escherichia coli.
    Rosenberg H; Russell LM; Jacomb PA; Chegwidden K
    J Bacteriol; 1982 Jan; 149(1):123-30. PubMed ID: 7033203
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Purification of UhpT, the sugar phosphate transporter of Escherichia coli.
    Tamai E; Fann MC; Tsuchiya T; Maloney PC
    Protein Expr Purif; 1997 Jul; 10(2):275-82. PubMed ID: 9226724
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The loss of the phoS periplasmic protein leads to a change in the specificity of a constitutive inorganic phosphate transport system in Escherichia coli.
    Willsky GR; Malamy MH
    Biochem Biophys Res Commun; 1974 Sep; 60(1):226-33. PubMed ID: 4608502
    [No Abstract]   [Full Text] [Related]  

  • 30. Phosphate uptake in the yeast Candida tropicalis: purification of phosphate-binding protein and investigations about its role in phosphate uptake.
    Jeanjean R; Bedu S; Rocca-Serra J; Foucault C
    Arch Microbiol; 1984 Mar; 137(3):215-9. PubMed ID: 6372722
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Phosphate transport in Escherichia coli.
    Medveczky N; Rosenberg H
    Biochim Biophys Acta; 1971 Aug; 241(2):494-506. PubMed ID: 4334147
    [No Abstract]   [Full Text] [Related]  

  • 32. Alcohols protect Escherichia coli against cold shock.
    Minakami H; Fridovich I
    Proc Soc Exp Biol Med; 1991 Jun; 197(2):168-74. PubMed ID: 1903206
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conditions leading to secretion of a normally periplasmic protein in Escherichia coli.
    Pages JM; Anba J; Lazdunski C
    J Bacteriol; 1987 Apr; 169(4):1386-90. PubMed ID: 3549684
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cold osmotic shock in Saccharomyces cerevisiae.
    Patching JW; Rose AH
    J Bacteriol; 1971 Oct; 108(1):451-8. PubMed ID: 5001201
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cation transport in Escherichia coli. VII. Potassium requirement for phosphate uptake.
    Weiden PL; Epstein W; Schultz SG
    J Gen Physiol; 1967 Jul; 50(6):1641-61. PubMed ID: 5340610
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heat shock of Escherichia coli increases binding of dnaK (the hsp70 homolog) to polypeptides by promoting its phosphorylation.
    Sherman MY; Goldberg AL
    Proc Natl Acad Sci U S A; 1993 Sep; 90(18):8648-52. PubMed ID: 8378342
    [TBL] [Abstract][Full Text] [Related]  

  • 37. PhoE protein pore of the outer membrane of Escherichia coli K12 is a particularly efficient channel for organic and inorganic phosphate.
    Korteland J; Tommassen J; Lugtenberg B
    Biochim Biophys Acta; 1982 Sep; 690(2):282-9. PubMed ID: 6289897
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of pH on the kinetics of Na+-dependent phosphate transport in rat renal brush-border membranes.
    Bindels RJ; van den Broek LA; van Os CH
    Biochim Biophys Acta; 1987 Feb; 897(1):83-92. PubMed ID: 3099845
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Complex transcriptional control of the sigma s-dependent stationary-phase-induced and osmotically regulated osmY (csi-5) gene suggests novel roles for Lrp, cyclic AMP (cAMP) receptor protein-cAMP complex, and integration host factor in the stationary-phase response of Escherichia coli.
    Lange R; Barth M; Hengge-Aronis R
    J Bacteriol; 1993 Dec; 175(24):7910-7. PubMed ID: 8253679
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The stimulation by salts of hexose phosphate uptake by Escherichia coli.
    Essenberg RC
    Biochem J; 1987 Apr; 243(2):345-50. PubMed ID: 3307761
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.