These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 8190359)
21. The influence of long-term exposure of mice to randomly varied power frequency magnetic fields on their nocturnal melatonin secretion patterns. de Bruyn L; de Jager L; Kuyl JM Environ Res; 2001 Feb; 85(2):115-21. PubMed ID: 11161661 [TBL] [Abstract][Full Text] [Related]
22. Melatonin rhythm onset in the adult siberian hamster: influence of photoperiod but not 60-Hz magnetic field exposure on melatonin content in the pineal gland and in circulation. Yellon SM; Truong HN J Biol Rhythms; 1998 Feb; 13(1):52-9. PubMed ID: 9486843 [TBL] [Abstract][Full Text] [Related]
23. Circularly polarised MF (500 micro T 50 Hz) does not acutely suppress melatonin secretion from cultured Wistar rat pineal glands. Tripp HM; Warman GR; Arendt J Bioelectromagnetics; 2003 Feb; 24(2):118-24. PubMed ID: 12524678 [TBL] [Abstract][Full Text] [Related]
24. Changes in human plasma melatonin profiles in response to 50 Hz magnetic field exposure. Wood AW; Armstrong SM; Sait ML; Devine L; Martin MJ J Pineal Res; 1998 Sep; 25(2):116-27. PubMed ID: 9755033 [TBL] [Abstract][Full Text] [Related]
25. Reduction of the nocturnal rise in pineal melatonin levels in rats exposed to 60-Hz electric fields in utero and for 23 days after birth. Reiter RJ; Anderson LE; Buschbom RL; Wilson BW Life Sci; 1988; 42(22):2203-6. PubMed ID: 3374254 [TBL] [Abstract][Full Text] [Related]
26. Rapid-onset/offset, variably scheduled 60 Hz electric and magnetic field exposure reduces nocturnal serum melatonin concentration in nonhuman primates. Rogers WR; Reiter RJ; Smith HD; Barlow-Walden L Bioelectromagnetics; 1995; Suppl 3():119-22. PubMed ID: 8787562 [TBL] [Abstract][Full Text] [Related]
27. Light suppression of nocturnal pineal and plasma melatonin in rats depends on wavelength and time of day. Honma S; Kanematsu N; Katsuno Y; Honma K Neurosci Lett; 1992 Dec; 147(2):201-4. PubMed ID: 1491808 [TBL] [Abstract][Full Text] [Related]
28. Magnetic field effects on pineal gland melatonin synthesis: comparative studies on albino and pigmented rodents. Olcese J; Reuss S Brain Res; 1986 Mar; 369(1-2):365-8. PubMed ID: 3754478 [TBL] [Abstract][Full Text] [Related]
29. Circularly polarized, sinusoidal, 50 Hz magnetic field exposure does not influence plasma testosterone levels of rats. Kato M; Honma K; Shigemitsu T; Shiga Y Bioelectromagnetics; 1994; 15(6):513-8. PubMed ID: 7880164 [TBL] [Abstract][Full Text] [Related]
30. Regularly scheduled, day-time, slow-onset 60 Hz electric and magnetic field exposure does not depress serum melatonin concentration in nonhuman primates. Rogers WR; Reiter RJ; Barlow-Walden L; Smith HD; Orr JL Bioelectromagnetics; 1995; Suppl 3():111-8. PubMed ID: 8787561 [TBL] [Abstract][Full Text] [Related]
31. Chronic exposure to 2.9 mT, 40 Hz magnetic field reduces melatonin concentrations in humans. Karasek M; Woldanska-Okonska M; Czernicki J; Zylinska K; Swietoslawski J J Pineal Res; 1998 Dec; 25(4):240-4. PubMed ID: 9885993 [TBL] [Abstract][Full Text] [Related]
33. Magnetic field effects on pineal N-acetyltransferase activity and melatonin content in the gerbil--role of pigmentation and sex. Stehle J; Reuss S; Schröder H; Henschel M; Vollrath L Physiol Behav; 1988; 44(1):91-4. PubMed ID: 3237820 [TBL] [Abstract][Full Text] [Related]
34. Light intensities required to suppress nocturnal melatonin secretion in albino and pigmented rats. Lynch HJ; Deng MH; Wurtman RJ Life Sci; 1984 Aug; 35(8):841-7. PubMed ID: 6541284 [TBL] [Abstract][Full Text] [Related]
35. Exposure of DMBA-treated female rats in a 50-Hz, 50 microTesla magnetic field: effects on mammary tumor growth, melatonin levels, and T lymphocyte activation. Mevissen M; Lerchl A; Szamel M; Löscher W Carcinogenesis; 1996 May; 17(5):903-10. PubMed ID: 8640936 [TBL] [Abstract][Full Text] [Related]
36. NTP Toxicity Studies of 60-Hz Magnetic Fields Administered by Whole Body Exposure to F344/N Rats, Sprague-Dawley Rats, and B6C3F1 Mice. Toxic Rep Ser; 1996 Sep; 58():1-B6. PubMed ID: 11986681 [TBL] [Abstract][Full Text] [Related]
37. Pineal melatonin level disruption in humans due to electromagnetic fields and ICNIRP limits. Halgamuge MN Radiat Prot Dosimetry; 2013 May; 154(4):405-16. PubMed ID: 23051584 [TBL] [Abstract][Full Text] [Related]
38. A histopathological study on alterations in DMBA-induced mammary carcinogenesis in rats with 50 Hz, 100 muT magnetic field exposure. Baum A; Mevissen M; Kamino K; Mohr U; Löscher W Carcinogenesis; 1995 Jan; 16(1):119-25. PubMed ID: 7834796 [TBL] [Abstract][Full Text] [Related]
39. Adrenergic and cholinergic regulation of in vitro melatonin release during ontogeny in the pineal gland of Long Evans rats. Wagner G; Brandstätter R; Hermann A Neuroendocrinology; 2000 Sep; 72(3):154-61. PubMed ID: 11025409 [TBL] [Abstract][Full Text] [Related]
40. Effect of L-NAME-induced hypertension on melatonin receptors and melatonin levels in the pineal gland and the peripheral organs of rats. Benova M; Herichova I; Stebelova K; Paulis L; Krajcirovicova K; Simko F; Zeman M Hypertens Res; 2009 Apr; 32(4):242-7. PubMed ID: 19262491 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]