These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 8191936)

  • 21. Femoral bone structural geometry adapts to mechanical loading and is influenced by sex steroids: the Penn State Young Women's Health Study.
    Petit MA; Beck TJ; Lin HM; Bentley C; Legro RS; Lloyd T
    Bone; 2004 Sep; 35(3):750-9. PubMed ID: 15336612
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-point bending of rat femur in the mediolateral direction: introduction and validation of a novel biomechanical testing protocol.
    Leppänen O; Sievänen H; Jokihaara J; Pajamäki I; Järvinen TL
    J Bone Miner Res; 2006 Aug; 21(8):1231-7. PubMed ID: 16869721
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of jump training on bone hypertrophy in young and old rats.
    Umemura Y; Ishiko T; Tsujimoto H; Miura H; Mokushi N; Suzuki H
    Int J Sports Med; 1995 Aug; 16(6):364-7. PubMed ID: 7591386
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Influence of clenbuterol on bone metabolism in exercised or sedentary rats.
    Cavalié H; Lac G; Lebecque P; Chanteranne B; Davicco MJ; Barlet JP
    J Appl Physiol (1985); 2002 Dec; 93(6):2034-7. PubMed ID: 12433936
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Attenuated anabolic response to exercise in lamin A/C haploinsufficient mice.
    Duque G; Li W; Yeo LS; Vidal C; Fatkin D
    Bone; 2011 Sep; 49(3):412-8. PubMed ID: 21575749
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Training increases the in vivo strength of the lower leg: an experimental study in the rat.
    Nordsletten L; Kaastad TS; Skjeldal S; Kirkeby OJ; Reikerås O; Ekeland A
    J Bone Miner Res; 1993 Sep; 8(9):1089-95. PubMed ID: 8237478
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Variability in skeletal mass, structure, and biomechanical properties among inbred strains of rats.
    Turner CH; Roeder RK; Wieczorek A; Foroud T; Liu G; Peacock M
    J Bone Miner Res; 2001 Aug; 16(8):1532-9. PubMed ID: 11499876
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High bone mass gained by exercise in growing male mice is increased by subsequent reduced exercise.
    Wu J; Wang XX; Higuchi M; Yamada K; Ishimi Y
    J Appl Physiol (1985); 2004 Sep; 97(3):806-10. PubMed ID: 15090485
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of doxorubicin administration on bone strength and quality in sedentary and physically active Wistar rats.
    Fonseca H; Carvalho A; Esteves J; Esteves VI; Moreira-Gonçalves D; Duarte JA
    Osteoporos Int; 2016 Dec; 27(12):3465-3475. PubMed ID: 27318466
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural and mechanical adaptations of immature trabecular bone to strenuous exercise.
    Hou JC; Salem GJ; Zernicke RF; Barnard RJ
    J Appl Physiol (1985); 1990 Oct; 69(4):1309-14. PubMed ID: 2262448
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Morphological characteristics of the developing proximal femur: a biomechanical perspective.
    Djurić M; Milovanović P; Djonić D; Minić A; Hahn M
    Srp Arh Celok Lek; 2012; 140(11-12):738-45. PubMed ID: 23350248
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Additive effect of voluntary exercise and growth hormone treatment on bone strength assessed at four different skeletal sites in an aged rat model.
    Mosekilde L; Thomsen JS; Orhii PB; McCarter RJ; Mejia W; Kalu DN
    Bone; 1999 Feb; 24(2):71-80. PubMed ID: 9951773
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of treadmill running on femoral bone in young orchidectomized rats.
    Horcajada M; Coxam V; Davicco M; Gaumet N; Pastoureau P; Leterrier C; Culioli J; Barlet J
    J Appl Physiol (1985); 1997 Jul; 83(1):129-33. PubMed ID: 9216954
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MRI texture analysis of femoral neck: Detection of exercise load-associated differences in trabecular bone.
    Harrison LC; Nikander R; Sikiö M; Luukkaala T; Helminen MT; Ryymin P; Soimakallio S; Eskola HJ; Dastidar P; Sievänen H
    J Magn Reson Imaging; 2011 Dec; 34(6):1359-66. PubMed ID: 21954096
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adaptations of immature trabecular bone to moderate exercise: geometrical, biochemical, and biomechanical correlates.
    Salem GJ; Zernicke RF; Martinez DA; Vailas AC
    Bone; 1993; 14(4):647-54. PubMed ID: 8274308
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Aged bone displays an increased responsiveness to low-intensity resistance exercise.
    Buhl KM; Jacobs CR; Turner RT; Evans GL; Farrell PA; Donahue HJ
    J Appl Physiol (1985); 2001 Apr; 90(4):1359-64. PubMed ID: 11247935
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The relative importance of genetics and phenotypic plasticity in dictating bone morphology and mechanics in aged mice: evidence from an artificial selection experiment.
    Middleton KM; Shubin CE; Moore DC; Carter PA; Garland T; Swartz SM
    Zoology (Jena); 2008; 111(2):135-47. PubMed ID: 18221861
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Morphological and structural characteristics of the proximal femur in human and rat.
    Bagi CM; Wilkie D; Georgelos K; Williams D; Bertolini D
    Bone; 1997 Sep; 21(3):261-7. PubMed ID: 9276091
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bone mechanical properties after exercise training in young and old rats.
    Raab DM; Smith EL; Crenshaw TD; Thomas DP
    J Appl Physiol (1985); 1990 Jan; 68(1):130-4. PubMed ID: 2312452
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evidence for an extensive collagen type III proximal domain in the rat femur. II. Expansion with exercise.
    Saino H; Luther F; Carter DH; Natali AJ; Turner DL; Shahtaheri SM; Aaron JE
    Bone; 2003 Jun; 32(6):660-8. PubMed ID: 12810173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.