These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 8192671)
21. Transmembrane segment 6 of the Glut1 glucose transporter is an outer helix and contains amino acid side chains essential for transport activity. Mueckler M; Makepeace C J Biol Chem; 2008 Apr; 283(17):11550-5. PubMed ID: 18245775 [TBL] [Abstract][Full Text] [Related]
22. A conserved amino acid motif (R-X-G-R-R) in the Glut1 glucose transporter is an important determinant of membrane topology. Sato M; Mueckler M J Biol Chem; 1999 Aug; 274(35):24721-5. PubMed ID: 10455140 [TBL] [Abstract][Full Text] [Related]
23. The effects of oxidizing and cysteine-reactive reagents on the inward rectifier potassium channels Kir2.3 and Kir1.1. Bannister JP; Young BA; Main MJ; Sivaprasadarao A; Wray D Pflugers Arch; 1999 Nov; 438(6):868-78. PubMed ID: 10591077 [TBL] [Abstract][Full Text] [Related]
24. Glutamine 161 of Glut1 glucose transporter is critical for transport activity and exofacial ligand binding. Mueckler M; Weng W; Kruse M J Biol Chem; 1994 Aug; 269(32):20533-8. PubMed ID: 8051152 [TBL] [Abstract][Full Text] [Related]
25. Cysteine residues in the organic anion transporter mOAT1. Tanaka K; Zhou F; Kuze K; You G Biochem J; 2004 May; 380(Pt 1):283-7. PubMed ID: 14979872 [TBL] [Abstract][Full Text] [Related]
26. Cysteine residues in the Na+/dicarboxylate co-transporter, NaDC-1. Pajor AM; Krajewski SJ; Sun N; Gangula R Biochem J; 1999 Nov; 344 Pt 1(Pt 1):205-9. PubMed ID: 10548552 [TBL] [Abstract][Full Text] [Related]
27. The predicted ATP-binding domains in the hexose transporter GLUT1 critically affect transporter activity. Liu Q; Vera JC; Peng H; Golde DW Biochemistry; 2001 Jul; 40(26):7874-81. PubMed ID: 11425315 [TBL] [Abstract][Full Text] [Related]
28. Identification of a key residue determining substrate affinity in the yeast glucose transporter Hxt7: a two-dimensional comprehensive study. Kasahara T; Kasahara M J Biol Chem; 2010 Aug; 285(34):26263-8. PubMed ID: 20525688 [TBL] [Abstract][Full Text] [Related]
29. Identification of the amine-polyamine-choline transporter superfamily 'consensus amphipathic region' as the target for inactivation of the Escherichia coli GABA transporter GabP by thiol modification reagents. Role of Cys-300 in restoring thiol sensitivity to Gabp lacking Cys. Hu LA; King SC Biochem J; 1999 May; 339 ( Pt 3)(Pt 3):649-55. PubMed ID: 10215604 [TBL] [Abstract][Full Text] [Related]
30. From triple cysteine mutants to the cysteine-less glucose transporter GLUT1: a functional analysis. Wellner M; Monden I; Keller K FEBS Lett; 1995 Aug; 370(1-2):19-22. PubMed ID: 7649297 [TBL] [Abstract][Full Text] [Related]
31. Crucial effects of amino acid side chain length in transmembrane segment 5 on substrate affinity in yeast glucose transporter Hxt7. Kasahara T; Shimogawara K; Kasahara M Biochemistry; 2011 Oct; 50(40):8674-81. PubMed ID: 21892826 [TBL] [Abstract][Full Text] [Related]
32. A cysteine-scanning mutagenesis study of transmembrane domain 8 of the electrogenic sodium/bicarbonate cotransporter NBCe1. McAlear SD; Bevensee MO J Biol Chem; 2006 Oct; 281(43):32417-27. PubMed ID: 16936285 [TBL] [Abstract][Full Text] [Related]
33. The large cytoplasmic loop of the glucose transporter GLUT1 is an essential structural element for function. Monden I; Olsowski A; Krause G; Keller K Biol Chem; 2001 Nov; 382(11):1551-8. PubMed ID: 11767944 [TBL] [Abstract][Full Text] [Related]
34. Cysteine residues in the D-galactose-H+ symport protein of Escherichia coli: effects of mutagenesis on transport, reaction with N-ethylmaleimide and antibiotic binding. McDonald TP; Henderson PJ Biochem J; 2001 Feb; 353(Pt 3):709-17. PubMed ID: 11171069 [TBL] [Abstract][Full Text] [Related]
35. Structure-function studies of the brain-type glucose transporter, GLUT3: alanine-scanning mutagenesis of putative transmembrane helix VIII and an investigation of the role of proline residues in transport catalysis. Seatter MJ; Kane S; Porter LM; Arbuckle MI; Melvin DR; Gould GW Biochemistry; 1997 May; 36(21):6401-7. PubMed ID: 9174356 [TBL] [Abstract][Full Text] [Related]
36. The amino acid transport system y+L/4F2hc is a heteromultimeric complex. Estévez R; Camps M; Rojas AM; Testar X; Devés R; Hediger MA; Zorzano A; Palacín M FASEB J; 1998 Oct; 12(13):1319-29. PubMed ID: 9761775 [TBL] [Abstract][Full Text] [Related]
37. Role of tryptophan-388 of GLUT1 glucose transporter in glucose-transport activity and photoaffinity-labelling with forskolin. Katagiri H; Asano T; Ishihara H; Lin JL; Inukai K; Shanahan MF; Tsukuda K; Kikuchi M; Yazaki Y; Oka Y Biochem J; 1993 May; 291 ( Pt 3)(Pt 3):861-7. PubMed ID: 8489512 [TBL] [Abstract][Full Text] [Related]
38. Functional characterization of cysteine residues in GlpT, the glycerol 3-phosphate transporter of Escherichia coli. Fann MC; Busch A; Maloney PC J Bacteriol; 2003 Jul; 185(13):3863-70. PubMed ID: 12813080 [TBL] [Abstract][Full Text] [Related]
39. Characterization of the Vibrio parahaemolyticus Na+/Glucose cotransporter. A bacterial member of the sodium/glucose transporter (SGLT) family. Xie Z; Turk E; Wright EM J Biol Chem; 2000 Aug; 275(34):25959-64. PubMed ID: 10852908 [TBL] [Abstract][Full Text] [Related]
40. Tryptophan 388 in putative transmembrane segment 10 of the rat glucose transporter Glut1 is essential for glucose transport. Kasahara T; Kasahara M J Biol Chem; 1998 Oct; 273(44):29113-7. PubMed ID: 9786919 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]