These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 8192836)

  • 1. Rhinal cortex lesions and object recognition in rats.
    Mumby DG; Pinel JP
    Behav Neurosci; 1994 Feb; 108(1):11-8. PubMed ID: 8192836
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anterior rhinal cortex and amygdala: dissociation of their contributions to memory and food preference in rhesus monkeys.
    Murray EA; Gaffan EA; Flint RW
    Behav Neurosci; 1996 Feb; 110(1):30-42. PubMed ID: 8652070
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Basal forebrain damage and object-recognition in rats.
    Kornecook TJ; Kippin TE; Pinel JP
    Behav Brain Res; 1999 Jan; 98(1):67-76. PubMed ID: 10210523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural substrates of crossmodal association memory in monkeys: the amygdala versus the anterior rhinal cortex.
    Goulet S; Murray EA
    Behav Neurosci; 2001 Apr; 115(2):271-84. PubMed ID: 11345954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lesions of rat perirhinal cortex exacerbate the memory deficit observed following damage to the fimbria-fornix.
    Wiig KA; Bilkey DK
    Behav Neurosci; 1995 Aug; 109(4):620-30. PubMed ID: 7576206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monkeys with rhinal cortex damage or neurotoxic hippocampal lesions are impaired on spatial scene learning and object reversals.
    Murray EA; Baxter MG; Gaffan D
    Behav Neurosci; 1998 Dec; 112(6):1291-303. PubMed ID: 9926813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monkeys (Macaca fascicularis) with rhinal cortex ablations succeed in object discrimination learning despite 24-hr intertrial intervals and fail at matching to sample despite double sample presentations.
    Gaffan D; Murray EA
    Behav Neurosci; 1992 Feb; 106(1):30-8. PubMed ID: 1554436
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of amygdaloid and amygdaloid-hippocampal lesions on object recognition and spatial working memory in rats.
    Aggleton JP; Blindt HS; Rawlins JN
    Behav Neurosci; 1989 Oct; 103(5):962-74. PubMed ID: 2803563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrithiamine-induced thiamine deficiency impairs object recognition in rats.
    Mumby DG; Mana MJ; Pinel JP; David E; Banks K
    Behav Neurosci; 1995 Dec; 109(6):1209-14. PubMed ID: 8748969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impairment of visual object-discrimination learning after perirhinal cortex ablation.
    Buckley MJ; Gaffan D
    Behav Neurosci; 1997 Jun; 111(3):467-75. PubMed ID: 9189261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual recognition in monkeys following rhinal cortical ablations combined with either amygdalectomy or hippocampectomy.
    Murray EA; Mishkin M
    J Neurosci; 1986 Jul; 6(7):1991-2003. PubMed ID: 3734871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amygdala, hippocampus and associative memory in rats.
    Peinado-Manzano MA
    Behav Brain Res; 1994 Apr; 61(2):175-90. PubMed ID: 8037865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Object recognition and location memory in monkeys with excitotoxic lesions of the amygdala and hippocampus.
    Murray EA; Mishkin M
    J Neurosci; 1998 Aug; 18(16):6568-82. PubMed ID: 9698344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the amygdala and the hippocampus in working memory for spatial and non-spatial information.
    Peinado-Manzano MA
    Behav Brain Res; 1990 May; 38(2):117-34. PubMed ID: 2363833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ischemia-induced object-recognition deficits in rats are attenuated by hippocampal ablation before or soon after ischemia.
    Mumby DG; Wood ER; Duva CA; Kornecook TJ; Pinel JP; Phillips AG
    Behav Neurosci; 1996 Apr; 110(2):266-81. PubMed ID: 8731053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The primate temporal pole: its putative role in object recognition and memory.
    Nakamura K; Kubota K
    Behav Brain Res; 1996 May; 77(1-2):53-77. PubMed ID: 8762159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of the inferior prefrontal convexity in performance of delayed nonmatching-to-sample.
    Kowalska DM; Bachevalier J; Mishkin M
    Neuropsychologia; 1991; 29(6):583-600. PubMed ID: 1944863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lesions of the anterior temporal stem and the performance of delayed match-to-sample and visual discriminations in monkeys.
    Cirillo RA; Horel JA; George PJ
    Behav Brain Res; 1989 Aug; 34(1-2):55-69. PubMed ID: 2765172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term effects of selective neonatal temporal lobe lesions on learning and memory in monkeys.
    Málková L; Mishkin M; Bachevalier J
    Behav Neurosci; 1995 Apr; 109(2):212-26. PubMed ID: 7619312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age and sex differences in the effects of selective temporal lobe lesion on the formation of visual discrimination habits in rhesus monkeys (Macaca mulatta).
    Bachevalier J; Brickson M; Hagger C; Mishkin M
    Behav Neurosci; 1990 Dec; 104(6):885-99. PubMed ID: 2285487
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.