These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

245 related articles for article (PubMed ID: 8192851)

  • 1. Cognitive functions and aging in the dog: acquisition of nonspatial visual tasks.
    Milgram NW; Head E; Weiner E; Thomas E
    Behav Neurosci; 1994 Feb; 108(1):57-68. PubMed ID: 8192851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial learning and memory as a function of age in the dog.
    Head E; Mehta R; Hartley J; Kameka M; Cummings BJ; Cotman CW; Ruehl WW; Milgram NW
    Behav Neurosci; 1995 Oct; 109(5):851-8. PubMed ID: 8554710
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual-discrimination learning ability and beta-amyloid accumulation in the dog.
    Head E; Callahan H; Muggenburg BA; Cotman CW; Milgram NW
    Neurobiol Aging; 1998; 19(5):415-25. PubMed ID: 9880044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size and reversal learning in the beagle dog as a measure of executive function and inhibitory control in aging.
    Tapp PD; Siwak CT; Estrada J; Head E; Muggenburg BA; Cotman CW; Milgram NW
    Learn Mem; 2003; 10(1):64-73. PubMed ID: 12551965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Landmark discrimination learning in the dog: effects of age, an antioxidant fortified food, and cognitive strategy.
    Milgram NW; Head E; Muggenburg B; Holowachuk D; Murphey H; Estrada J; Ikeda-Douglas CJ; Zicker SC; Cotman CW
    Neurosci Biobehav Rev; 2002 Oct; 26(6):679-95. PubMed ID: 12479842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavioural rigidity and rule-learning deficits following isolation-rearing in the rat: neurochemical correlates.
    Jones GH; Marsden CA; Robbins TW
    Behav Brain Res; 1991 Apr; 43(1):35-50. PubMed ID: 1677579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cognitive experience and its effect on age-dependent cognitive decline in beagle dogs.
    Milgram NW
    Neurochem Res; 2003 Nov; 28(11):1677-82. PubMed ID: 14584821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beta-amyloid accumulation correlates with cognitive dysfunction in the aged canine.
    Cummings BJ; Head E; Afagh AJ; Milgram NW; Cotman CW
    Neurobiol Learn Mem; 1996 Jul; 66(1):11-23. PubMed ID: 8661247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An involvement of acetylcholine in object discrimination learning and memory in the marmoset.
    Ridley RM; Bowes PM; Baker HF; Crow TJ
    Neuropsychologia; 1984; 22(3):253-63. PubMed ID: 6431311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Discrimination learning and reversal following electrolytic lesions of the median raphe nucleus.
    Wirtshafter D; Asin KE
    Physiol Behav; 1986; 37(2):213-9. PubMed ID: 3737730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible cold lesions of the parahippocampal gyrus in monkeys result in deficits on the delayed match-to-sample and other visual tasks.
    George PJ; Horel JA; Cirillo RA
    Behav Brain Res; 1989 Sep; 34(3):163-78. PubMed ID: 2789698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Working memory in aged rats.
    Aggleton JP; Blindt HS; Candy JM
    Behav Neurosci; 1989 Oct; 103(5):975-83. PubMed ID: 2803564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The differences in learning abilities between spontaneously hypertensive (SHR) and Wistar normotensive rats are cue dependent.
    Lukaszewska I; Niewiadomska G
    Neurobiol Learn Mem; 1995 Jan; 63(1):43-53. PubMed ID: 7663879
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of fornix transection and combined fornix transection, mammillary body lesions and hippocampal ablations on object-pair association memory in the rhesus monkey.
    Saunders RC; Weiskrantz L
    Behav Brain Res; 1989 Nov; 35(2):85-94. PubMed ID: 2510765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of amygdaloid and amygdaloid-hippocampal lesions on object recognition and spatial working memory in rats.
    Aggleton JP; Blindt HS; Rawlins JN
    Behav Neurosci; 1989 Oct; 103(5):962-74. PubMed ID: 2803563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Medial versus lateral hyperstriatal lesions in pigeons: effects on autoshaping, non-matching-to-sample and spatial discrimination learning at short and long intertrial intervals.
    Macphail EM; Reilly S
    Behav Brain Res; 1989 Oct; 35(1):63-73. PubMed ID: 2803545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cognitive mapping in rats: the role of the hippocampal and frontal system in retention and reversal.
    Becker JT; Olton DS; Anderson CA; Breitinger ER
    Behav Brain Res; 1981 Jul; 3(1):1-22. PubMed ID: 7248062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of egocentric and allocentric age-dependent spatial learning in the beagle dog.
    Christie LA; Studzinski CM; Araujo JA; Leung CS; Ikeda-Douglas CJ; Head E; Cotman CW; Milgram NW
    Prog Neuropsychopharmacol Biol Psychiatry; 2005 Mar; 29(3):361-9. PubMed ID: 15795044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Successful performance by monkeys with lesions of the hippocampal formation on AB and object retrieval, two tasks that mark developmental changes in human infants.
    Diamond A; Zola-Morgan S; Squire LR
    Behav Neurosci; 1989 Jun; 103(3):526-37. PubMed ID: 2736067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Function of the dorsal and medial cortex of turtles in learning.
    Grisham W; Powers AS
    Behav Neurosci; 1989 Oct; 103(5):991-7. PubMed ID: 2803566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.