These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 8193133)
61. Use of fluorescence resonance energy transfer to investigate the conformation of DNA substrates bound to the Klenow fragment. Furey WS; Joyce CM; Osborne MA; Klenerman D; Peliska JA; Balasubramanian S Biochemistry; 1998 Mar; 37(9):2979-90. PubMed ID: 9485450 [TBL] [Abstract][Full Text] [Related]
62. Probing DNA triple helix structure by chemical ligation. Dolinnaya NG; Pyatrauskene OV; Shabarova ZA FEBS Lett; 1991 Jun; 284(2):232-4. PubMed ID: 2060640 [TBL] [Abstract][Full Text] [Related]
63. DNA substrate structural requirements for the exonuclease and polymerase activities of procaryotic and phage DNA polymerases. Cowart M; Gibson KJ; Allen DJ; Benkovic SJ Biochemistry; 1989 Mar; 28(5):1975-83. PubMed ID: 2541768 [TBL] [Abstract][Full Text] [Related]
64. Base pairing and steric interactions between pyrimidine strand bridging loops and the purine strand in DNA pyrimidine.purine.pyrimidine triplexes. Booher MA; Wang S; Kool ET Biochemistry; 1994 Apr; 33(15):4645-51. PubMed ID: 8161521 [TBL] [Abstract][Full Text] [Related]
65. Triple-helix formation is compatible with an adjacent DNA-protein complex. Huang CC; Nguyen D; Martinez R; Edwards CA Biochemistry; 1992 Feb; 31(4):993-8. PubMed ID: 1310426 [TBL] [Abstract][Full Text] [Related]
66. Crystal structures of an N-terminal fragment from Moloney murine leukemia virus reverse transcriptase complexed with nucleic acid: functional implications for template-primer binding to the fingers domain. Najmudin S; Coté ML; Sun D; Yohannan S; Montano SP; Gu J; Georgiadis MM J Mol Biol; 2000 Feb; 296(2):613-32. PubMed ID: 10669612 [TBL] [Abstract][Full Text] [Related]
68. Stabilization of triple helical DNA by a benzopyridoquinoxaline intercalator. Marchand C; Bailly C; Nguyen CH; Bisagni E; Garestier T; Hélène C; Waring MJ Biochemistry; 1996 Apr; 35(15):5022-32. PubMed ID: 8664295 [TBL] [Abstract][Full Text] [Related]
69. Molecular dynamics investigations of DNA triple helical models: unique features of the Watson-Crick duplex. Sekharudu CY; Yathindra N; Sundaralingam M J Biomol Struct Dyn; 1993 Oct; 11(2):225-44. PubMed ID: 8286053 [TBL] [Abstract][Full Text] [Related]
70. Oligonucleotides and their derivatives as tools for investigations of protein-nucleic acid interactions in template biocatalysis. Lavrik OI Nucleic Acids Symp Ser; 1991; (24):185-8. PubMed ID: 1726742 [TBL] [Abstract][Full Text] [Related]
71. Triple helices formed at oligopyrimidine*oligopurine sequences with base pair inversions: effect of a triplex-specific ligand on stability and selectivity. Kukreti S; Sun JS; Loakes D; Brown DM; Nguyen CH; Bisagni E; Garestier T; Helene C Nucleic Acids Res; 1998 May; 26(9):2179-83. PubMed ID: 9547278 [TBL] [Abstract][Full Text] [Related]
72. Targeted cross-linking of the human beta-globin gene in living cells mediated by a triple helix forming oligonucleotide. Shahid KA; Majumdar A; Alam R; Liu ST; Kuan JY; Sui X; Cuenoud B; Glazer PM; Miller PS; Seidman MM Biochemistry; 2006 Feb; 45(6):1970-8. PubMed ID: 16460044 [TBL] [Abstract][Full Text] [Related]
73. Effect of a triplex-binding ligand on parallel and antiparallel DNA triple helices using short unmodified and acridine-linked oligonucleotides. Cassidy SA; Strekowski L; Wilson WD; Fox KR Biochemistry; 1994 Dec; 33(51):15338-47. PubMed ID: 7803397 [TBL] [Abstract][Full Text] [Related]
74. Dimerization of the Klenow fragment of Escherichia coli DNA polymerase I is linked to its mode of DNA binding. Bailey MF; Van der Schans EJ; Millar DP Biochemistry; 2007 Jul; 46(27):8085-99. PubMed ID: 17567151 [TBL] [Abstract][Full Text] [Related]
75. Properties of triple helices formed by parallel-stranded hairpins containing 8-aminopurines. Aviñó A; Frieden M; Morales JC; García de la Torre B; Güimil García R; Azorín F; Gelpí JL; Orozco M; González C; Eritja R Nucleic Acids Res; 2002 Jun; 30(12):2609-19. PubMed ID: 12060677 [TBL] [Abstract][Full Text] [Related]
76. Drug binding to higher ordered DNA structures: netropsin complexation with a nucleic acid triple helix. Park YW; Breslauer KJ Proc Natl Acad Sci U S A; 1992 Jul; 89(14):6653-7. PubMed ID: 1321445 [TBL] [Abstract][Full Text] [Related]
77. Triple helix formation with purine-rich phosphorothioate-containing oligonucleotides covalently linked to an acridine derivative. Lacoste J; François JC; Hélène C Nucleic Acids Res; 1997 May; 25(10):1991-8. PubMed ID: 9115367 [TBL] [Abstract][Full Text] [Related]
78. Highly stable DNA triplexes formed with cationic phosphoramidate pyrimidine alpha-oligonucleotides. Michel T; Debart F; Heitz F; Vasseur JJ Chembiochem; 2005 Jul; 6(7):1254-62. PubMed ID: 15912553 [TBL] [Abstract][Full Text] [Related]
79. Ligand-mediated transcription elongation control using triplex-based padlock oligonucleotides. Bello-Roufaï M; Roulon T; Escudé C Chem Biol; 2004 Apr; 11(4):509-16. PubMed ID: 15123245 [TBL] [Abstract][Full Text] [Related]
80. Insights into DNA polymerization mechanisms from structure and function analysis of HIV-1 reverse transcriptase. Patel PH; Jacobo-Molina A; Ding J; Tantillo C; Clark AD; Raag R; Nanni RG; Hughes SH; Arnold E Biochemistry; 1995 Apr; 34(16):5351-63. PubMed ID: 7537090 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]