These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 8193133)

  • 81. Triplex crosslinking through furan oxidation requires perturbation of the structured triple-helix.
    Gyssels E; Carrette LL; Vercruysse E; Stevens K; Madder A
    Chembiochem; 2015 Mar; 16(4):651-8. PubMed ID: 25630588
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Kinetic analysis of sequence-specific alkylation of DNA by pyrimidine oligodeoxyribonucleotide-directed triple-helix formation.
    Taylor MJ; Dervan PB
    Bioconjug Chem; 1997; 8(3):354-64. PubMed ID: 9177841
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Thermodynamic and kinetic analyses of DNA triplex formation: application of filter-binding assay.
    Sarai A; Sugiura S; Torigoe H; Shindo H
    J Biomol Struct Dyn; 1993 Oct; 11(2):245-52. PubMed ID: 8286054
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Analysis of promoter-specific repression by triple-helical DNA complexes in a eukaryotic cell-free transcription system.
    Maher LJ; Dervan PB; Wold B
    Biochemistry; 1992 Jan; 31(1):70-81. PubMed ID: 1731886
    [TBL] [Abstract][Full Text] [Related]  

  • 85. A directional nucleation-zipping mechanism for triple helix formation.
    Alberti P; Arimondo PB; Mergny JL; Garestier T; Hélène C; Sun JS
    Nucleic Acids Res; 2002 Dec; 30(24):5407-15. PubMed ID: 12490709
    [TBL] [Abstract][Full Text] [Related]  

  • 86. DNA synthesis on discontinuous templates by human DNA polymerases: implications for non-homologous DNA recombination.
    Islas L; Fairley CF; Morgan WF
    Nucleic Acids Res; 1998 Aug; 26(16):3729-38. PubMed ID: 9685489
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Triple-helical capture assay for quantification of polymerase chain reaction products.
    Vary CP
    Clin Chem; 1992 May; 38(5):687-94. PubMed ID: 1582021
    [TBL] [Abstract][Full Text] [Related]  

  • 88. DNA triplex stabilization by a delta-carboline derivative tethered to third strand oligonucleotides.
    Todorović N; Phuong NT; Langer P; Weisz K
    Bioorg Med Chem Lett; 2006 Mar; 16(6):1647-50. PubMed ID: 16377182
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Recent improvements in antigene technology.
    Buchini S; Leumann CJ
    Curr Opin Chem Biol; 2003 Dec; 7(6):717-26. PubMed ID: 14644181
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Pausing of DNA polymerases on duplex DNA templates due to ligand binding in vitro.
    Smolina IV; Demidov VV; Frank-Kamenetskii MD
    J Mol Biol; 2003 Feb; 326(4):1113-25. PubMed ID: 12589757
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Phosphorothioate oligonucleotide-directed triple helix formation.
    Hacia JG; Wold BJ; Dervan PB
    Biochemistry; 1994 May; 33(18):5367-9. PubMed ID: 8180158
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Kinetic analysis of oligodeoxyribonucleotide-directed triple-helix formation on DNA.
    Maher LJ; Dervan PB; Wold BJ
    Biochemistry; 1990 Sep; 29(37):8820-6. PubMed ID: 2271558
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Photoinduced crosslinking of double-helical DNA by psoralen covalently linked to a triple helix-forming oligonucleotide under near-physiological conditions.
    Li H; Broughton-Head VJ; Fox KR; Brown T
    Nucleosides Nucleotides Nucleic Acids; 2007; 26(8-9):1005-9. PubMed ID: 18058526
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Inhibition of DNA binding proteins by oligonucleotide-directed triple helix formation.
    Maher LJ; Wold B; Dervan PB
    Science; 1989 Aug; 245(4919):725-30. PubMed ID: 2549631
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Evaluation of effects of bivalent cations on the formation of purine-rich triple-helix DNA by ESI-FT-MS.
    Wan C; Cui M; Song F; Liu Z; Liu S
    J Am Soc Mass Spectrom; 2009 Jul; 20(7):1281-6. PubMed ID: 19297188
    [TBL] [Abstract][Full Text] [Related]  

  • 96. DNA end joining by the Klenow fragment of DNA polymerase I.
    King JS; Fairley CF; Morgan WF
    J Biol Chem; 1996 Aug; 271(34):20450-7. PubMed ID: 8702784
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Triplex-forming oligonucleotides: a third strand for DNA nanotechnology.
    Chandrasekaran AR; Rusling DA
    Nucleic Acids Res; 2018 Feb; 46(3):1021-1037. PubMed ID: 29228337
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Biosensor detection of triplex formation by modified oligonucleotides.
    Bates PJ; Reddoch JF; Hansakul P; Arrow A; Dale R; Miller DM
    Anal Biochem; 2002 Aug; 307(2):235-43. PubMed ID: 12202239
    [TBL] [Abstract][Full Text] [Related]  

  • 99. In vitro DNA synthesis by DNA polymerase I and DNA polymerase alpha on single-stranded DNA containing either purine or pyrimidine monoadducts.
    Hoffmann JS; Moustacchi E; Villani G; Sage E
    Biochem Pharmacol; 1992 Sep; 44(6):1123-9. PubMed ID: 1417935
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Nonenzymatic sequence-specific cleavage of duplex DNA via triple-helix formation by homopyrimidine phosphorothioate oligonucleotides.
    Tsukahara S; Suzuki J; Ushijima K; Takai K; Takaku H
    Bioorg Med Chem; 1996 Dec; 4(12):2219-24. PubMed ID: 9022985
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.