These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 8193144)
1. Catalytic metal ion binding in enolase: the crystal structure of an enolase-Mn2+-phosphonoacetohydroxamate complex at 2.4-A resolution. Zhang E; Hatada M; Brewer JM; Lebioda L Biochemistry; 1994 May; 33(20):6295-300. PubMed ID: 8193144 [TBL] [Abstract][Full Text] [Related]
2. Chelation of serine 39 to Mg2+ latches a gate at the active site of enolase: structure of the bis(Mg2+) complex of yeast enolase and the intermediate analog phosphonoacetohydroxamate at 2.1-A resolution. Wedekind JE; Poyner RR; Reed GH; Rayment I Biochemistry; 1994 Aug; 33(31):9333-42. PubMed ID: 8049235 [TBL] [Abstract][Full Text] [Related]
3. A carboxylate oxygen of the substrate bridges the magnesium ions at the active site of enolase: structure of the yeast enzyme complexed with the equilibrium mixture of 2-phosphoglycerate and phosphoenolpyruvate at 1.8 A resolution. Larsen TM; Wedekind JE; Rayment I; Reed GH Biochemistry; 1996 Apr; 35(14):4349-58. PubMed ID: 8605183 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of enolase: the crystal structure of asymmetric dimer enolase-2-phospho-D-glycerate/enolase-phosphoenolpyruvate at 2.0 A resolution. Zhang E; Brewer JM; Minor W; Carreira LA; Lebioda L Biochemistry; 1997 Oct; 36(41):12526-34. PubMed ID: 9376357 [TBL] [Abstract][Full Text] [Related]
5. Structure of the bis divalent cation complex with phosphonoacetohydroxamate at the active site of enolase. Poyner RR; Reed GH Biochemistry; 1992 Aug; 31(31):7166-73. PubMed ID: 1322695 [TBL] [Abstract][Full Text] [Related]
6. Crystallographic studies of the catalytic mechanism of the neutral form of fructose-1,6-bisphosphatase. Zhang Y; Liang JY; Huang S; Ke H; Lipscomb WN Biochemistry; 1993 Feb; 32(7):1844-57. PubMed ID: 8382525 [TBL] [Abstract][Full Text] [Related]
7. Mechanism of enolase: the crystal structure of enolase-Mg2(+)-2-phosphoglycerate/phosphoenolpyruvate complex at 2.2-A resolution. Lebioda L; Stec B Biochemistry; 1991 Mar; 30(11):2817-22. PubMed ID: 2007120 [TBL] [Abstract][Full Text] [Related]
8. Engineering the enolase magnesium II binding site: implications for its evolution. Schreier B; Höcker B Biochemistry; 2010 Sep; 49(35):7582-9. PubMed ID: 20690637 [TBL] [Abstract][Full Text] [Related]
9. The catalytic Mn2+ sites in the enolase-inhibitor complex: crystallography, single-crystal EPR, and DFT calculations. Carmieli R; Larsen TM; Reed GH; Zein S; Neese F; Goldfarb D J Am Chem Soc; 2007 Apr; 129(14):4240-52. PubMed ID: 17367133 [TBL] [Abstract][Full Text] [Related]
10. Functional and structural changes due to a serine to alanine mutation in the active-site flap of enolase. Poyner RR; Larsen TM; Wong SW; Reed GH Arch Biochem Biophys; 2002 May; 401(2):155-63. PubMed ID: 12054465 [TBL] [Abstract][Full Text] [Related]
11. Fluoride inhibition of enolase: crystal structure and thermodynamics. Qin J; Chai G; Brewer JM; Lovelace LL; Lebioda L Biochemistry; 2006 Jan; 45(3):793-800. PubMed ID: 16411755 [TBL] [Abstract][Full Text] [Related]
12. A differential scanning calorimetric study of the effects of metal ions, substrate/product, substrate analogues and chaotropic anions on the thermal denaturation of yeast enolase 1. Brewer JM; Wampler JE Int J Biol Macromol; 2001 Mar; 28(3):213-8. PubMed ID: 11251228 [TBL] [Abstract][Full Text] [Related]
13. Role of metal ions in catalysis by enolase: an ordered kinetic mechanism for a single substrate enzyme. Poyner RR; Cleland WW; Reed GH Biochemistry; 2001 Jul; 40(27):8009-17. PubMed ID: 11434770 [TBL] [Abstract][Full Text] [Related]
14. Octahedral coordination at the high-affinity metal site in enolase: crystallographic analysis of the MgII--enzyme complex from yeast at 1.9 A resolution. Wedekind JE; Reed GH; Rayment I Biochemistry; 1995 Apr; 34(13):4325-30. PubMed ID: 7703246 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of enolase: the crystal structures of enolase-Ca2(+)- 2-phosphoglycerate and enolase-Zn2(+)-phosphoglycolate complexes at 2.2-A resolution. Lebioda L; Stec B; Brewer JM; Tykarska E Biochemistry; 1991 Mar; 30(11):2823-7. PubMed ID: 2007121 [TBL] [Abstract][Full Text] [Related]
16. Role of His159 in yeast enolase catalysis. Vinarov DA; Nowak T Biochemistry; 1999 Sep; 38(37):12138-49. PubMed ID: 10508418 [TBL] [Abstract][Full Text] [Related]
17. Calculated effects of the chemical environment of 2-phospho-D-glycerate on the pKa of its carbon-2 and correlations with the proposed mechanism of action of enolase. Hilal SH; Brewer JM; Lebioda L; Carreira LA Biochem Biophys Res Commun; 1995 Jun; 211(2):607-13. PubMed ID: 7794276 [TBL] [Abstract][Full Text] [Related]
18. Structure and catalytic properties of an engineered heterodimer of enolase composed of one active and one inactive subunit. Sims PA; Menefee AL; Larsen TM; Mansoorabadi SO; Reed GH J Mol Biol; 2006 Jan; 355(3):422-31. PubMed ID: 16309698 [TBL] [Abstract][Full Text] [Related]