BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 8193567)

  • 1. A motor-driven ventricular assist device controlled with an optical encoder system.
    Nakamura T; Hayashi K; Yamane H
    Biomed Mater Eng; 1993; 3(3):153-65. PubMed ID: 8193567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determinant factors of efficiency of a motor-driven ventricular assist device.
    Nakamura T; Hayashi K; Hirano K; Matsumoto T
    Biomed Mater Eng; 1994; 4(1):27-36. PubMed ID: 7920192
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Control of a rotary pulsatile cardiac assist pump driven by an electric motor without a pressure sensor to avoid collapse of the pump inlet.
    Trinkl J; Havlik P; Mesana T; Mitsui N; Morita S; Demunck JL; Tourres JL; Monties JR
    ASAIO J; 1993; 39(3):M237-41. PubMed ID: 8268535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment and improvement of the system efficiency for the moving-actuator type biventricular assist device.
    Chung J; Kim WE; Lee JJ; Nam KW; Choi J; Park JW; Choi SW; Park CY; Sun K; Min BG
    Artif Organs; 2004 Jun; 28(6):549-55. PubMed ID: 15153147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A completely implanted left ventricular assist device. Chronic in vivo testing.
    Weiss WJ; Rosenberg G; Snyder AJ; Donachy J; Reibson J; Kawaguchi O; Sapirstein JS; Pae WE; Pierce WS
    ASAIO J; 1993; 39(3):M427-32. PubMed ID: 8268572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An optimal controller for an electric ventricular-assist device: theory, implementation, and testing.
    Klute GK; Tasch U; Geselowitz DB
    IEEE Trans Biomed Eng; 1992 Apr; 39(4):394-403. PubMed ID: 1592405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a prototype magnetically suspended rotor ventricular assist device.
    Bearnson GB; Maslen EH; Olsen DB; Allaire PE; Khanwilkar PS; Long JW; Kim HC
    ASAIO J; 1996; 42(4):275-81. PubMed ID: 8828784
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an implantable motor-driven assist pump system.
    Mitamura Y; Okamoto E; Hirano A; Mikami T
    IEEE Trans Biomed Eng; 1990 Feb; 37(2):146-56. PubMed ID: 2312139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of the pulsation device for rotary blood pumps.
    Yambe T; Shiraishi Y; Sekine K; Shibata M; Yamaguchi T; Jian LH; Yoshizawa M; Tanaka A; Matsuki H; Sato F; Haga Y; Esashi M; Tabayashi K; Mitamura Y; Sasada H; Nitta S
    Artif Organs; 2005 Nov; 29(11):912-5. PubMed ID: 16266306
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a miniature implantable left ventricular assist device using CAD/CAM technology.
    Okamoto E; Hashimoto T; Mitamura Y
    J Artif Organs; 2003; 6(3):162-7. PubMed ID: 14598098
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a compact, highly efficient, totally implantable motor-driven assist pump system.
    Okamoto E; Tomoda K; Yamamoto K; Mitamura Y; Mikami T
    Artif Organs; 1994 Dec; 18(12):911-7. PubMed ID: 7887828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new technique to control brushless motor for blood pump application.
    Fonseca J; Andrade A; Nicolosi DE; Biscegli JF; Legendre D; Bock E; Lucchi JC
    Artif Organs; 2008 Apr; 32(4):355-9. PubMed ID: 18370953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of a small centrifugal blood pump with magnetic bearings.
    Jahanmir S; Hunsberger AZ; Ren Z; Heshmat H; Heshmat C; Tomaszewski MJ; Walton JF
    Artif Organs; 2009 Sep; 33(9):714-26. PubMed ID: 19775263
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cool seal system: a practical solution to the shaft seal problem and heat related complications with implantable rotary blood pumps.
    Yamazaki K; Mori T; Tomioka J; Litwak P; Antaki JF; Tagusari O; Koyanagi H; Griffith BP; Kormos RL
    ASAIO J; 1997; 43(5):M567-71. PubMed ID: 9360108
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cora valveless pulsatile rotary pump: new design and control.
    Monties JR; Trinkl J; Mesana T; Havlik PJ; Demunck JL
    Ann Thorac Surg; 1996 Jan; 61(1):463-8. PubMed ID: 8561627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Permanent magnetic-levitation of rotating impeller: a decisive breakthrough in the centrifugal pump.
    Qian KX; Zeng P; Ru WM; Yuan HY; Feng ZG; Li L
    J Med Eng Technol; 2002; 26(1):36-8. PubMed ID: 11924845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemodynamics of a pulsatile left ventricular assist device driven by a counterpulsation pump in a mock circulation.
    Khir AW; Swalen MJ; Segers P; Verdonck P; Pepper JR
    Artif Organs; 2006 Apr; 30(4):308-12. PubMed ID: 16643389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel implantable electromechanical ventricular assist device. First acute animal testing.
    Kaufmann R; Rakhorst G; Mihaylov D; Elstrodt J; Nix C; Reul H; Rau G
    ASAIO J; 1997; 43(4):360-2. PubMed ID: 9242953
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An adaptive aortic pressure observer for the Penn State Electric Ventricular Assist Device.
    Tasch U; Koontz JW; Ignatoski MA; Geselowitz DB
    IEEE Trans Biomed Eng; 1990 Apr; 37(4):374-83. PubMed ID: 2338350
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control system for an implantable rotary blood pump.
    Nakata KI; Yoshikawa M; Takano T; Sankai Y; Ohtsuka G; Glueck J; Fujisawa A; Makinouchi K; Yokokawa M; Nosaka S; Nose Y
    Ann Thorac Cardiovasc Surg; 2000 Aug; 6(4):242-6. PubMed ID: 11042480
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.