These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. A neural network method for prediction of beta-turn types in proteins using evolutionary information. Kaur H; Raghava GP Bioinformatics; 2004 Nov; 20(16):2751-8. PubMed ID: 15145798 [TBL] [Abstract][Full Text] [Related]
6. Progress of 1D protein structure prediction at last. Rost B; Sander C Proteins; 1995 Nov; 23(3):295-300. PubMed ID: 8710823 [TBL] [Abstract][Full Text] [Related]
7. Combining evolutionary information and neural networks to predict protein secondary structure. Rost B; Sander C Proteins; 1994 May; 19(1):55-72. PubMed ID: 8066087 [TBL] [Abstract][Full Text] [Related]
8. Seventy-five percent accuracy in protein secondary structure prediction. Frishman D; Argos P Proteins; 1997 Mar; 27(3):329-35. PubMed ID: 9094735 [TBL] [Abstract][Full Text] [Related]
9. The HSSP database of protein structure-sequence alignments. Schneider R; Sander C Nucleic Acids Res; 1996 Jan; 24(1):201-5. PubMed ID: 8594579 [TBL] [Abstract][Full Text] [Related]
10. An integrated approach to the analysis and modeling of protein sequences and structures. III. A comparative study of sequence conservation in protein structural families using multiple structural alignments. Yang AS; Honig B J Mol Biol; 2000 Aug; 301(3):691-711. PubMed ID: 10966778 [TBL] [Abstract][Full Text] [Related]
11. Prediction of protein secondary structure at better than 70% accuracy. Rost B; Sander C J Mol Biol; 1993 Jul; 232(2):584-99. PubMed ID: 8345525 [TBL] [Abstract][Full Text] [Related]
12. The influence of gapped positions in multiple sequence alignments on secondary structure prediction methods. Simossis VA; Heringa J Comput Biol Chem; 2004 Dec; 28(5-6):351-66. PubMed ID: 15556476 [TBL] [Abstract][Full Text] [Related]
13. PROMALS web server for accurate multiple protein sequence alignments. Pei J; Kim BH; Tang M; Grishin NV Nucleic Acids Res; 2007 Jul; 35(Web Server issue):W649-52. PubMed ID: 17452345 [TBL] [Abstract][Full Text] [Related]
14. Prediction of beta-turns in proteins from multiple alignment using neural network. Kaur H; Raghava GP Protein Sci; 2003 Mar; 12(3):627-34. PubMed ID: 12592033 [TBL] [Abstract][Full Text] [Related]
15. Quantification of secondary structure prediction improvement using multiple alignments. Levin JM; Pascarella S; Argos P; Garnier J Protein Eng; 1993 Nov; 6(8):849-54. PubMed ID: 8309932 [TBL] [Abstract][Full Text] [Related]
16. A 3D-1D substitution matrix for protein fold recognition that includes predicted secondary structure of the sequence. Rice DW; Eisenberg D J Mol Biol; 1997 Apr; 267(4):1026-38. PubMed ID: 9135128 [TBL] [Abstract][Full Text] [Related]
17. Secondary structure prediction for modelling by homology. Boscott PE; Barton GJ; Richards WG Protein Eng; 1993 Apr; 6(3):261-6. PubMed ID: 8506260 [TBL] [Abstract][Full Text] [Related]
18. Improving the accuracy of protein secondary structure prediction using structural alignment. Montgomerie S; Sundararaj S; Gallin WJ; Wishart DS BMC Bioinformatics; 2006 Jun; 7():301. PubMed ID: 16774686 [TBL] [Abstract][Full Text] [Related]
19. Porter: a new, accurate server for protein secondary structure prediction. Pollastri G; McLysaght A Bioinformatics; 2005 Apr; 21(8):1719-20. PubMed ID: 15585524 [TBL] [Abstract][Full Text] [Related]
20. Computational methods for protein secondary structure prediction using multiple sequence alignments. Heringa J Curr Protein Pept Sci; 2000 Nov; 1(3):273-301. PubMed ID: 12369910 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]