These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. A new esterase for the cleavage of pivalic acid-containing prodrug esters of cephalosporins. Sauber K; Aretz W; Meiwes J; Wollmann T Enzyme Microb Technol; 1996 Jul; 19(1):15-9. PubMed ID: 8672280 [TBL] [Abstract][Full Text] [Related]
4. [Microbiological transformation of cephalosporin C]. Bondareva NS; Levitov MM Mikrobiologiia; 1980; 49(6):870-5. PubMed ID: 6970879 [TBL] [Abstract][Full Text] [Related]
5. A novel cephalosporin deacetylating acetyl xylan esterase from Bacillus subtilis with high activity toward cephalosporin C and 7-aminocephalosporanic acid. Tian Q; Song P; Jiang L; Li S; Huang H Appl Microbiol Biotechnol; 2014 Mar; 98(5):2081-9. PubMed ID: 23828600 [TBL] [Abstract][Full Text] [Related]
6. Enzymatic removal of carboxyl protecting groups. III. Fast removal of allyl and chloroethyl esters by Bacillus subtilis esterase (BS2). Fotakopoulou I; Barbayianni E; Constantinou-Kokotou V; Bornscheuer UT; Kokotos G J Org Chem; 2007 Feb; 72(3):782-6. PubMed ID: 17253795 [TBL] [Abstract][Full Text] [Related]
7. Dissociatiion of esterase from proteinase activity of Bacillus subtilis spores. Sierra G Can J Microbiol; 1967 Jun; 13(6):673-8. PubMed ID: 4962290 [No Abstract] [Full Text] [Related]
8. Understanding promiscuous amidase activity of an esterase from Bacillus subtilis. Kourist R; Bartsch S; Fransson L; Hult K; Bornscheuer UT Chembiochem; 2008 Jan; 9(1):67-9. PubMed ID: 18022973 [No Abstract] [Full Text] [Related]
10. Studies on microbial degradation of cephalosporin C derivatives. II. On the degradation of several derivatives and the activities of some strains isolated from patients. Nishida M; Yokota Y; Matsubara T; Okui M; Mine Y J Antibiot (Tokyo); 1968 Jun; 21(6):375-8. PubMed ID: 4972705 [No Abstract] [Full Text] [Related]
12. Computational design of new enzymes for hydrolysis and synthesis of third-generation cephalosporin antibiotics. Xue J; Wang P; Kuang J; Zhu Y Enzyme Microb Technol; 2020 Oct; 140():109649. PubMed ID: 32912699 [TBL] [Abstract][Full Text] [Related]
13. Esterases from Bacillus subtilis and B. stearothermophilus share high sequence homology but differ substantially in their properties. Henke E; Bornscheuer UT Appl Microbiol Biotechnol; 2002 Nov; 60(3):320-6. PubMed ID: 12436314 [TBL] [Abstract][Full Text] [Related]
14. A novel esterase from Bacillus subtilis (RRL 1789): purification and characterization of the enzyme. Kaiser P; Raina C; Parshad R; Johri S; Verma V; Andrabi KI; Qazi GN Protein Expr Purif; 2006 Feb; 45(2):262-8. PubMed ID: 16269247 [TBL] [Abstract][Full Text] [Related]
15. Fungal glucuronoyl esterases and substrate uronic acid recognition. Duranová M; Hirsch J; Kolenová K; Biely P Biosci Biotechnol Biochem; 2009 Nov; 73(11):2483-7. PubMed ID: 19897892 [TBL] [Abstract][Full Text] [Related]
16. Use of aqueous two-phase systems for in situ extraction of water soluble antibiotics during their synthesis by enzymes immobilized on porous supports. Hernandez-Justiz O; Fernandez-Lafuente R; Terreni M; Guisan JM Biotechnol Bioeng; 1998 Jul; 59(1):73-9. PubMed ID: 10099316 [TBL] [Abstract][Full Text] [Related]
17. In vitro evaluation of cephacetrile, a new cephalosporin antibiotic. Neu HC; Winshell EB J Antibiot (Tokyo); 1972 Jul; 25(7):400-4. PubMed ID: 4661097 [No Abstract] [Full Text] [Related]
18. Studies on microbial degradation of cephalosporin C derivatives. I. The role of beta-lactamase and acylesterase in the enzymatic degradation of cephalosporins. Nishida M; Yokota Y; Okui M; Mine Y; Matsubara T J Antibiot (Tokyo); 1968 Mar; 21(3):165-9. PubMed ID: 4876996 [No Abstract] [Full Text] [Related]