BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 8194123)

  • 21. EPR studies on hydroxyl radical-scavenging activities of pravastatin and fluvastatin.
    Vandjelovic N; Zhu H; Misra HP; Zimmerman RP; Jia Z; Li Y
    Mol Cell Biochem; 2012 May; 364(1-2):71-7. PubMed ID: 22207075
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of chlorogenic acid on hydroxyl radical.
    Zang LY; Cosma G; Gardner H; Castranova V; Vallyathan V
    Mol Cell Biochem; 2003 May; 247(1-2):205-10. PubMed ID: 12841649
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spin-trapping studies of peroxynitrite decomposition and of 3-morpholinosydnonimine N-ethylcarbamide autooxidation: direct evidence for metal-independent formation of free radical intermediates.
    Augusto O; Gatti RM; Radi R
    Arch Biochem Biophys; 1994 Apr; 310(1):118-25. PubMed ID: 8161194
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Copper, zinc superoxide dismutase catalyzes hydroxyl radical production from hydrogen peroxide.
    Yim MB; Chock PB; Stadtman ER
    Proc Natl Acad Sci U S A; 1990 Jul; 87(13):5006-10. PubMed ID: 2164216
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Scavenging activity of furan derivatives against hydroxyl radical generated by Fenton system].
    Okada Y; Okajima H
    Yakugaku Zasshi; 1998 Jun; 118(6):226-30. PubMed ID: 9629058
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electron spin resonance studies on photosensitized formation of hydroxyl radical by C-phycocyanin from Spirulina platensis.
    Zhang S; Xie J; Zhang J; Zhao J; Jiang L
    Biochim Biophys Acta; 1999 Jan; 1426(1):205-11. PubMed ID: 9878738
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydroxyl free-radical spin-adduct in rat brain synaptosomes. Observations on the reduction of the nitroxide.
    Floyd RA
    Biochim Biophys Acta; 1983 Mar; 756(2):204-16. PubMed ID: 6299374
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of the activity of L-ascorbic acid 2-[3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-2H-1-be nzopyran-6-yl-hydrogen phosphate] potassium salt in hydroxyl radical elimination.
    Tomita T; Kashima M; Tsujimoto Y
    Chem Pharm Bull (Tokyo); 2000 Mar; 48(3):330-3. PubMed ID: 10726851
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Investigation of the presence of OH radicals in electrolyzed NaCl solution by electron spin resonance spectroscopy.
    Stan SD; Woods JS; Daeschel MA
    J Agric Food Chem; 2005 Jun; 53(12):4901-5. PubMed ID: 15941333
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydroxyl radical generation by coal mine dust: possible implication to coal workers' pneumoconiosis (CWP).
    Dalal NS; Newman J; Pack D; Leonard S; Vallyathan V
    Free Radic Biol Med; 1995 Jan; 18(1):11-20. PubMed ID: 7896164
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Essential oil phenyl propanoids. Useful as .OH scavengers?
    Taira J; Ikemoto T; Yoneya T; Hagi A; Murakami A; Makino K
    Free Radic Res Commun; 1992; 16(3):197-204. PubMed ID: 1318253
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Hydroxyl Radical is a Critical Intermediate in the Voltammetric Detection of Hydrogen Peroxide.
    Roberts JG; Voinov MA; Schmidt AC; Smirnova TI; Sombers LA
    J Am Chem Soc; 2016 Mar; 138(8):2516-9. PubMed ID: 26840154
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spin trap studies on the decomposition of peroxynitrite.
    Lemercier JN; Squadrito GL; Pryor WA
    Arch Biochem Biophys; 1995 Aug; 321(1):31-9. PubMed ID: 7639532
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Free radical scavenging activity of novel thiazolidine-2,4-dione derivatives.
    Berczyński P; Kruk I; Piechowska T; Ceylan-Unlusoy M; Bozdağ-Dündar O; Aboul-Enein HY
    Luminescence; 2013; 28(6):900-4. PubMed ID: 23225772
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Scavenging of reactive oxygen species by the plant phenols genistein and oleuropein.
    Kruk I; Aboul-Enein HY; Michalska T; Lichszteld K; Kładna A
    Luminescence; 2005; 20(2):81-9. PubMed ID: 15803505
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detection of Hydroxyl and Perhydroxyl Radical Generation from Bleaching Agents with Nuclear Magnetic Resonance Spectroscopy.
    Sharma H; Sharma DS
    J Clin Pediatr Dent; 2017; 41(2):126-134. PubMed ID: 28288300
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vanadyl-induced Fenton-like reaction in RNA. An ESR and spin trapping study.
    Carmichael AJ
    FEBS Lett; 1990 Feb; 261(1):165-70. PubMed ID: 1689671
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Excimer laser-induced hydroxyl radical formation and keratocyte death in vitro.
    Shimmura S; Masumizu T; Nakai Y; Urayama K; Shimazaki J; Bissen-Miyajima H; Kohno M; Tsubota K
    Invest Ophthalmol Vis Sci; 1999 May; 40(6):1245-9. PubMed ID: 10235559
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Scavenging of superoxide anion radical and hydroxyl radical by novel thiazolyl-thiazolidine-2,4-dione compounds.
    Bozdağ-Dündar O; Gürkan S; Aboul-Enein HY; Kruk I; Kładna A
    Luminescence; 2009; 24(3):194-201. PubMed ID: 19347853
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using cyclodextrins to encapsulate oxygen-centered and carbon-centered radical adducts: the case of DMPO, PBN, and MNP spin traps.
    Spulber M; Schlick S
    J Phys Chem A; 2010 Jun; 114(21):6217-25. PubMed ID: 20462228
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.