These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 819426)
1. Studies on the subsite structure of amylases. II. Difference-spectrophotometric studies on the interaction of maltotriose with liquefying alpha-amylase from Bacillus subtilis. Ohnishi M; Kegai H; Hiromi K J Biochem; 1975 Aug; 78(2):247-51. PubMed ID: 819426 [TBL] [Abstract][Full Text] [Related]
2. Tryptophan residues of saccharifying alpha-amylase from Bacillus subtilis. A kinetic discrimination of states of tryptophan residues using N-bromosuccinimide. Fujimori H; Ohnishi M; Hiromi K J Biochem; 1978 May; 83(5):1503-10. PubMed ID: 96111 [TBL] [Abstract][Full Text] [Related]
3. The number of subsites in the active site of saccharifying alpha-amylase from Bacillus subtilis. Shibaoka T; Miyano K; Watanabe T J Biochem; 1974 Sep; 76(3):475-9. PubMed ID: 4215806 [No Abstract] [Full Text] [Related]
4. The role of tyrosine residue of bacterial liquefying alpha-amylase in the enzymatic hydrolysis of linear substrates as studied by chemical modification with acetic anhydride. Onishi M; Suganuma T; Hiromi K J Biochem; 1974 Jul; 76(1):7-13. PubMed ID: 4215804 [No Abstract] [Full Text] [Related]
5. Difference spectroscopic study of the interaction between soybean beta-amylase and substrate or substrate analogues. Nitta Y; Kunikata T; Watanabe T J Biochem; 1983 Apr; 93(4):1195-201. PubMed ID: 6190798 [TBL] [Abstract][Full Text] [Related]
6. Subsite affinities of bacterial liquefying alpha-amylase evaluated from the rate parameters of linear substrates. Iwasa S; Aoshima H; Hiromi K; Hatano H J Biochem; 1974 May; 75(5):969-78. PubMed ID: 4213409 [No Abstract] [Full Text] [Related]
7. Effect of photooxidation of bacterial liquefying alpha-amylase dependent on the degree of polymerization of linear substrates. Aoshima H; Manabe T; Hiromi K; Hatano H Biochim Biophys Acta; 1974 Apr; 341(2):497-504. PubMed ID: 4209049 [No Abstract] [Full Text] [Related]
8. Kinetics and mechanism of hydrolysis of phenyl alpha-maltos- ide by saccharifying alpha-amylase of Bacillus subtilis. II. Dependence of the rates of formation of phenol, phenyl alpha-glucoside and maltotriose on the substrate concentration. Yoshida H; Hiromi K; Ono S J Biochem; 1969 May; 65(5):741-50. PubMed ID: 4979925 [No Abstract] [Full Text] [Related]
10. Interaction of catalytic-site mutants of Bacillus subtilis alpha-amylase with substrates and acarbose. Takase K Biochim Biophys Acta; 1992 Aug; 1122(3):278-82. PubMed ID: 1380303 [TBL] [Abstract][Full Text] [Related]
11. The pH jump study of enzyme proteins. I. Liquefying alpha-amylase from Bacillus subtilis. Hiromi K; Onishi M; Kanaya K; Matsumoto T J Biochem; 1975 May; 77(5):957-63. PubMed ID: 239936 [TBL] [Abstract][Full Text] [Related]
12. The effects of chemical modification by N-bromosuccinimide of saccharifying alpha-amylase from Bacillus subtilis on various substrates. Fujimori H; Onishi M; Hiromi K J Biochem; 1974 Apr; 75(4):767-77. PubMed ID: 4211156 [No Abstract] [Full Text] [Related]
13. Molecular cloning, nucleotide sequencing, and expression of the Bacillus subtilis (natto) IAM1212 alpha-amylase gene, which encodes an alpha-amylase structurally similar to but enzymatically distinct from that of B. subtilis 2633. Emori M; Takagi M; Maruo B; Yano K J Bacteriol; 1990 Sep; 172(9):4901-8. PubMed ID: 2118504 [TBL] [Abstract][Full Text] [Related]
14. An active center tryptophan residue in liquefying alpha-amylase from Bacillus amyloliquefaciens. Kochhar S; Dua RD Biochem Biophys Res Commun; 1985 Jan; 126(2):966-73. PubMed ID: 3872124 [TBL] [Abstract][Full Text] [Related]
15. Model for carbohydrase action. Aspergillus oryzae alpha-amylase degradation of maltotriose. Allen JD; Thoma JA Biochemistry; 1978 Jun; 17(12):2345-50. PubMed ID: 307964 [TBL] [Abstract][Full Text] [Related]
16. Studies on the subsite structure of amylases. I. Interaction of glucoamylase with substrate and analogues studied by difference-spectrophotometry. Onishi M; Kegai H; Hiromi K J Biochem; 1975 Apr; 77(4):695-703. PubMed ID: 1150637 [TBL] [Abstract][Full Text] [Related]
17. Actions of porcine pancreatic and Bacillus subtilis alpha-amylases and Aspergillus niger glucoamylase on phosphorylated (1--4)-alpha-D-glucan. Takeda Y; Hizukuri S; Ozono Y; Suetake M Biochim Biophys Acta; 1983 Dec; 749(3):302-11. PubMed ID: 6419777 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the native form and the carboxy-terminally truncated halotolerant form of α-amylases from Bacillus subtilis strain FP-133. Takenaka S; Miyatake A; Tanaka K; Kuntiya A; Techapun C; Leksawasdi N; Seesuriyachan P; Chaiyaso T; Watanabe M; Yoshida K J Basic Microbiol; 2015 Jun; 55(6):780-9. PubMed ID: 25689045 [TBL] [Abstract][Full Text] [Related]
19. Kinetics and mechanism of hydrolysis of phenyl alpha-maltoside by saccharifying alpha-amylase of Bacillus subtilis. I. Formation of maltotriose in the course of hydrolysis. Yoshida H; Hiromi K; Ono S J Biochem; 1967 Oct; 62(4):439-46. PubMed ID: 4968078 [No Abstract] [Full Text] [Related]
20. Studies on the substrate specificity of Taka-amylase A1. XIV. Preparation of 6-deoxy-6-halogenomaltotrioses and their hydrolysis by Taka-amylase A. Omichi K; Matsushima Y J Biochem; 1978 Oct; 84(4):835-41. PubMed ID: 309468 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]