BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 8194743)

  • 1. An analysis of the proopiomelanocortin systems in the pituitary of the squamate reptile Lacerta galloti.
    Lancha A; Batista MA; Dores RM
    Gen Comp Endocrinol; 1994 Mar; 93(3):438-47. PubMed ID: 8194743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An anatomical and biochemical study of the pituitary proopiomelanocortin systems in the polypteriform fish Calamoichthys calabaricus.
    Dores RM; Kaneko DJ; Sandoval F
    Gen Comp Endocrinol; 1993 Apr; 90(1):87-99. PubMed ID: 8389305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detection and partial characterization of proopiomelanocortin-related end-products from the pars intermedia of the toad, Bombina orientalis.
    Dores RM; Truong T; Steveson TC
    Gen Comp Endocrinol; 1992 Aug; 87(2):197-207. PubMed ID: 1327951
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential N-acetylation of alpha-MSH and beta-endorphin in the intermediate pituitary of the turtle, Pseudemys scripta.
    Dores RM; Harris S
    Peptides; 1993; 14(4):849-55. PubMed ID: 8234035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression of three proopiomelanocortin subtype genes and mass spectrometric identification of POMC-derived peptides in pars distalis and pars intermedia of barfin flounder pituitary.
    Takahashi A; Amano M; Amiya N; Yamanome T; Yamamori K; Kawauchi H
    Gen Comp Endocrinol; 2006 Feb; 145(3):280-6. PubMed ID: 16242690
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the post-translational processing of alpha-MSH in the pituitaries of the chondrostean fishes, Acipenser transmontanus and Polyodon spathula.
    Keller H; Redding JM; Moberg G; Dores RM
    Gen Comp Endocrinol; 1994 May; 94(2):159-65. PubMed ID: 7926625
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of posttranslational processing of proopiomelanocortin in the banded houndshark pituitary by combined cDNA cloning and mass spectrometry.
    Takahashi A; Kobayashi Y; Moriyama S; Hyodo S
    Gen Comp Endocrinol; 2008 May; 157(1):41-8. PubMed ID: 18396285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detection of N-acetylated forms of alpha-MSH and beta-endorphin in the intermediate pituitary of the holostean fishes, Lepisosteus spatula, Lepisosteus osseus, and Amia calva.
    Dores RM; Keller H; White Y; Marra LE; Youson JH
    Peptides; 1994; 15(3):483-7. PubMed ID: 7937324
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of pro-ACTH/endorphin-derived peptides in rat hypothalamus.
    Emeson RB; Eipper BA
    J Neurosci; 1986 Mar; 6(3):837-49. PubMed ID: 3007691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential mechanisms for the N-acetylation of alpha-melanocyte-stimulating hormone and beta-endorphin in the intermediate pituitary of the frog, Xenopus laevis.
    Dores RM; Steveson TC; Lopez K
    Neuroendocrinology; 1991 Jan; 53(1):54-62. PubMed ID: 1646412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alpha-melanocyte-stimulating hormone and N-acetyl-beta-endorphin immunoreactivities are localized in the human pituitary but are not restricted to the zona intermedia.
    Evans VR; Manning AB; Bernard LH; Chronwall BM; Millington WR
    Endocrinology; 1994 Jan; 134(1):97-106. PubMed ID: 8275975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Pro-opiomelanocortin neuronal systems].
    Tranchand-Bunel D; Delbende C; Guy J; Jegou S; Jenks BJ; Mocaƫr E; Pelletier G; Vaudry H
    Rev Neurol (Paris); 1987; 143(6-7):471-89. PubMed ID: 3310184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The processing of beta-endorphin and alpha-melanotrophin in the pars intermedia of Xenopus laevis is influenced by background adaptation.
    Maruthainar K; Peng-Loh Y; Smyth DG
    J Endocrinol; 1992 Dec; 135(3):469-78. PubMed ID: 1336791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. POMC-related products in the intermediate pituitary of the amphibian, Bufo marinus: differential subcellular processing in the Golgi and secretory granules.
    Steveson TC; Dores RM
    Peptides; 1996; 17(3):425-34. PubMed ID: 8735969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of acetylation and other post-translational modifications in melanocortin function and interactions with endorphins.
    Wilkinson CW
    Peptides; 2006 Feb; 27(2):453-71. PubMed ID: 16280185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Melanotropes of the lizard, Anolis carolinensis, lack N-acetylating mechanisms for both alpha-melanocyte-stimulating hormone and beta-endorphin.
    Dores RM; Wasinger H; Vaudry D; Steveson T; Lancha A
    Neuroendocrinology; 1994 Jun; 59(6):603-9. PubMed ID: 8084383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evidence for a common precursor for alpha MSH and beta-endorphin in the intermediate lobe of the pituitary of the reptile Anolis carolinensis.
    Dores RM
    Peptides; 1982; 3(6):925-35. PubMed ID: 6300808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of N-acetylated forms of beta-endorphin and nonacetylated alpha-MSH in the intermediate pituitary of the toad, Bufo marinus.
    Steveson TC; Jennett CL; Dores RM
    Peptides; 1990; 11(4):797-803. PubMed ID: 2172945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Obliteration of alpha-melanocyte-stimulating hormone derived from POMC in pituitary and brains of PC2-deficient mice.
    Miller R; Aaron W; Toneff T; Vishnuvardhan D; Beinfeld MC; Hook VY
    J Neurochem; 2003 Aug; 86(3):556-63. PubMed ID: 12859669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of background adaptation on alpha-MSH and beta-endorphin in secretory granule types of melanotrope cells of Xenopus laevis.
    Roubos EW; Berghs CA
    Cell Tissue Res; 1993 Dec; 274(3):587-96. PubMed ID: 8293450
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.