BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 8195199)

  • 1. The effect of Met-->Leu mutations on calmodulin's ability to activate cyclic nucleotide phosphodiesterase.
    Zhang M; Li M; Wang JH; Vogel HJ
    J Biol Chem; 1994 Jun; 269(22):15546-52. PubMed ID: 8195199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of domain 3 of calmodulin in activation of calmodulin-stimulated phosphodiesterase and smooth muscle myosin light chain kinase.
    Su Z; Fan D; George SE
    J Biol Chem; 1994 Jun; 269(24):16761-5. PubMed ID: 8206999
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of inhibitory and calmodulin-binding domains of the PDE1A1 and PDE1A2 calmodulin-stimulated cyclic nucleotide phosphodiesterases.
    Sonnenburg WK; Seger D; Kwak KS; Huang J; Charbonneau H; Beavo JA
    J Biol Chem; 1995 Dec; 270(52):30989-1000. PubMed ID: 8537356
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activation of calcineurin and smooth muscle myosin light chain kinase by Met-to-Leu mutants of calmodulin.
    Edwards RA; Walsh MP; Sutherland C; Vogel HJ
    Biochem J; 1998 Apr; 331 ( Pt 1)(Pt 1):149-52. PubMed ID: 9512473
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for domain organization within the 61-kDa calmodulin-dependent cyclic nucleotide phosphodiesterase from bovine brain.
    Charbonneau H; Kumar S; Novack JP; Blumenthal DK; Griffin PR; Shabanowitz J; Hunt DF; Beavo JA; Walsh KA
    Biochemistry; 1991 Aug; 30(32):7931-40. PubMed ID: 1651111
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tryptophan fluorescence quenching by methionine and selenomethionine residues of calmodulin: orientation of peptide and protein binding.
    Yuan T; Weljie AM; Vogel HJ
    Biochemistry; 1998 Mar; 37(9):3187-95. PubMed ID: 9485473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonessential role for methionines in the productive association between calmodulin and the plasma membrane Ca-ATPase.
    Yin D; Sun H; Weaver RF; Squier TC
    Biochemistry; 1999 Oct; 38(41):13654-60. PubMed ID: 10521272
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium-dependent and -independent interactions of the calmodulin-binding domain of cyclic nucleotide phosphodiesterase with calmodulin.
    Yuan T; Walsh MP; Sutherland C; Fabian H; Vogel HJ
    Biochemistry; 1999 Feb; 38(5):1446-55. PubMed ID: 9931009
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation of the 61-kDa calmodulin-stimulated cyclic nucleotide phosphodiesterase at serine 120 reduces its affinity for calmodulin.
    Florio VA; Sonnenburg WK; Johnson R; Kwak KS; Jensen GS; Walsh KA; Beavo JA
    Biochemistry; 1994 Aug; 33(30):8948-54. PubMed ID: 8043581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular mechanisms of calmodulin's functional versatility.
    Zhang M; Yuan T
    Biochem Cell Biol; 1998; 76(2-3):313-23. PubMed ID: 9923700
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chimeric calmodulin-cardiac troponin C proteins differentially activate calmodulin target enzymes.
    George SE; VanBerkum MF; Ono T; Cook R; Hanley RM; Putkey JA; Means AR
    J Biol Chem; 1990 Jun; 265(16):9228-35. PubMed ID: 2160966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional NMR studies of selenomethionyl calmodulin.
    Zhang M; Vogel HJ
    J Mol Biol; 1994 Jun; 239(4):545-54. PubMed ID: 8006966
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tryptophan fluorescence of calmodulin binding domain peptides interacting with calmodulin containing unnatural methionine analogues.
    Weljie AM; Vogel HJ
    Protein Eng; 2000 Jan; 13(1):59-66. PubMed ID: 10679531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NMR studies of the methionine methyl groups in calmodulin.
    Siivari K; Zhang M; Palmer AG; Vogel HJ
    FEBS Lett; 1995 Jun; 366(2-3):104-8. PubMed ID: 7789524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of Phe-92 in the Ca(2+)-induced conformational transition in the C-terminal domain of calmodulin.
    Meyer DF; Mabuchi Y; Grabarek Z
    J Biol Chem; 1996 May; 271(19):11284-90. PubMed ID: 8626680
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calmodulin activation of target enzymes. Consequences of deletions in the central helix.
    VanBerkum MF; George SE; Means AR
    J Biol Chem; 1990 Mar; 265(7):3750-6. PubMed ID: 2154485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. KS-505a, an isoform-selective inhibitor of calmodulin-dependent cyclic nucleotide phosphodiesterase.
    Ichimura M; Eiki R; Osawa K; Nakanishi S; Kase H
    Biochem J; 1996 May; 316 ( Pt 1)(Pt 1):311-6. PubMed ID: 8645223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Site-specific modification of calmodulin Ca²(+) affinity tunes the skeletal muscle ryanodine receptor activation profile.
    Jiang J; Zhou Y; Zou J; Chen Y; Patel P; Yang JJ; Balog EM
    Biochem J; 2010 Nov; 432(1):89-99. PubMed ID: 20815817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibition of calmodulin dependent c-AMP-phosphodiesterase by moxaverine and papaverine.
    Mannhold R
    Arzneimittelforschung; 1988 Dec; 38(12):1806-8. PubMed ID: 2854468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Met125 is essential for maintaining the structural integrity of calmodulin's C-terminal domain.
    Nelson SED; Weber DK; Rebbeck RT; Cornea RL; Veglia G; Thomas DD
    Sci Rep; 2020 Dec; 10(1):21320. PubMed ID: 33288831
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.