These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 8195199)

  • 21. Methionine to glutamine substitutions in the C-terminal domain of calmodulin impair the activation of three protein kinases.
    Chin D; Means AR
    J Biol Chem; 1996 Nov; 271(48):30465-71. PubMed ID: 8940012
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interaction of ganglioside with specific peptide sequences as a mechanism for the modulation of calmodulin-dependent enzymes.
    Higashi H; Yoshida S; Sato K; Yamagata T
    J Biochem; 1996 Jul; 120(1):66-73. PubMed ID: 8864846
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of inhibitor binding sites of the cAMP-specific phosphodiesterase 4.
    Richter W; Unciuleac L; Hermsdorf T; Kronbach T; Dettmer D
    Cell Signal; 2001 Apr; 13(4):287-97. PubMed ID: 11306246
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential inhibition of calmodulin-sensitive phosphodiesterase and Ca++-adenosine triphosphatase by chlorpromazine-linked calmodulin.
    Prozialeck WC; Wallace TL; Weiss B
    J Pharmacol Exp Ther; 1987 Oct; 243(1):171-9. PubMed ID: 2822896
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of the human calmodulin-like protein expressed in Escherichia coli.
    Rhyner JA; Koller M; Durussel-Gerber I; Cox JA; Strehler EE
    Biochemistry; 1992 Dec; 31(51):12826-32. PubMed ID: 1334432
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Holothurin: an activator of bovine brain 3'-5' phosphodiesterase.
    Vig PJ; Mehrotra BD; Desaiah D
    Res Commun Chem Pathol Pharmacol; 1990 Mar; 67(3):419-22. PubMed ID: 1693008
    [TBL] [Abstract][Full Text] [Related]  

  • 27. In vitro enzyme activation with calbindin-D28k, the vitamin D-dependent 28 kDa calcium binding protein.
    Reisner PD; Christakos S; Vanaman TC
    FEBS Lett; 1992 Feb; 297(1-2):127-31. PubMed ID: 1312945
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calmodulin-like activity and calcium-dependent phosphodiesterase in purified cells of the rat zona glomerulosa and zona fasciculata.
    Koletsky RJ; Brown EM; Williams GH
    Endocrinology; 1983 Aug; 113(2):485-90. PubMed ID: 6307640
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Substitution of the critical methionine residues in trigonopsis variabilis D-amino acid oxidase with leucine enhances its resistance to hydrogen peroxide.
    Ju SS; Lin LL; Chien HR; Hsu WH
    FEMS Microbiol Lett; 2000 May; 186(2):215-9. PubMed ID: 10802174
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of the structure of a low Km, rolipram-sensitive cAMP phosphodiesterase. Mapping of the catalytic domain.
    Jin SL; Swinnen JV; Conti M
    J Biol Chem; 1992 Sep; 267(26):18929-39. PubMed ID: 1326538
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Analysis of the functional coupling between calmodulin's calcium binding and peptide recognition properties.
    Mirzoeva S; Weigand S; Lukas TJ; Shuvalova L; Anderson WF; Watterson DM
    Biochemistry; 1999 Mar; 38(13):3936-47. PubMed ID: 10194305
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Substitution of the methionine residues of calmodulin with the unnatural amino acid analogs ethionine and norleucine: biochemical and spectroscopic studies.
    Yuan T; Vogel HJ
    Protein Sci; 1999 Jan; 8(1):113-21. PubMed ID: 10210190
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential stimulation of NAD kinase and binding of peptide substrates by wild-type and mutant plant calmodulin isoforms.
    Liao B; Gawienowski MC; Zielinski RE
    Arch Biochem Biophys; 1996 Mar; 327(1):53-60. PubMed ID: 8615696
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Requirements for calcium and calmodulin in the calmodulin kinase activation cascade.
    Tokumitsu H; Soderling TR
    J Biol Chem; 1996 Mar; 271(10):5617-22. PubMed ID: 8621423
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of substrate phosphorylation and use of calmodulin mutants to address implications from the enzyme crystal structure of calmodulin-dependent protein kinase I.
    Chin D; Winkler KE; Means AR
    J Biol Chem; 1997 Dec; 272(50):31235-40. PubMed ID: 9395448
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Stimulation of the erythrocyte Ca2+-ATPase and of bovine brain cyclic nucleotide phosphodiesterase by chemically modified calmodulin.
    Guerini D; Krebs J; Carafoli E
    Eur J Biochem; 1987 Dec; 170(1-2):35-42. PubMed ID: 2826158
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Different Roles of N-Terminal and C-Terminal Domains in Calmodulin for Activation of Bacillus anthracis Edema Factor.
    Lübker C; Dove S; Tang WJ; Urbauer RJ; Moskovitz J; Urbauer JL; Seifert R
    Toxins (Basel); 2015 Jul; 7(7):2598-614. PubMed ID: 26184312
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of mouse oocyte maturation: involvement of cyclic AMP phosphodiesterase and calmodulin.
    Bornslaeger EA; Wilde MW; Schultz RM
    Dev Biol; 1984 Oct; 105(2):488-99. PubMed ID: 6207062
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interaction of smooth muscle relaxant drugs with calmodulin and cyclic nucleotide phosphodiesterase.
    Ronca-Testoni S; Hrelia S; Hakim G; Rossi CA
    Experientia; 1985 Jan; 41(1):75-6. PubMed ID: 2981701
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Site-directed mutagenesis of glutamine residue of calmodulin. Activation of guanylate cyclase of Tetrahymena plasma membrane.
    Nagao S; Matsuki S; Kanoh H; Ozawa T; Yamada K; Nozawa Y
    J Biol Chem; 1990 Apr; 265(11):5926-9. PubMed ID: 1969409
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.