These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 8195227)
61. Inactivation of the CDC25 gene product in Saccharomyces cerevisiae leads to a decrease in glycolytic activity which is independent of cAMP levels. Oehlen LJ; Scholte ME; de Koning W; van Dam K J Gen Microbiol; 1993 Sep; 139(9):2091-100. PubMed ID: 8245836 [TBL] [Abstract][Full Text] [Related]
62. Suppression of defective RAS1 and RAS2 functions in yeast by an adenylate cyclase activated by a single amino acid change. De Vendittis E; Vitelli A; Zahn R; Fasano O EMBO J; 1986 Dec; 5(13):3657-63. PubMed ID: 3549283 [TBL] [Abstract][Full Text] [Related]
63. Cell size modulation by CDC25 and RAS2 genes in Saccharomyces cerevisiae. Baroni MD; Martegani E; Monti P; Alberghina L Mol Cell Biol; 1989 Jun; 9(6):2715-23. PubMed ID: 2548086 [TBL] [Abstract][Full Text] [Related]
64. Biochemical characterization of yeast RAS2 mutants reveals a new region of ras protein involved in the interaction with GTPase-activating proteins. Wood DR; Poullet P; Wilson BA; Khalil M; Tanaka K; Cannon JF; Tamanoi F J Biol Chem; 1994 Feb; 269(7):5322-7. PubMed ID: 8106517 [TBL] [Abstract][Full Text] [Related]
65. Isolation and characterization of temperature-sensitive mutations in the RAS2 and CYR1 genes of Saccharomyces cerevisiae. Mitsuzawa H; Uno I; Oshima T; Ishikawa T Genetics; 1989 Dec; 123(4):739-48. PubMed ID: 2558958 [TBL] [Abstract][Full Text] [Related]
66. Ssa1p chaperone interacts with the guanine nucleotide exchange factor of ras Cdc25p and controls the cAMP pathway in Saccharomyces cerevisiae. Geymonat M; Wang L; Garreau H; Jacquet M Mol Microbiol; 1998 Nov; 30(4):855-64. PubMed ID: 10094633 [TBL] [Abstract][Full Text] [Related]
67. The minimal active domain of the mouse ras exchange factor CDC25Mm. Coccetti P; Mauri I; Alberghina L; Martegani E; Parmeggiani A Biochem Biophys Res Commun; 1995 Jan; 206(1):253-9. PubMed ID: 7818528 [TBL] [Abstract][Full Text] [Related]
68. The N-terminal half of Cdc25 is essential for processing glucose signaling in Saccharomyces cerevisiae. Gross A; Winograd S; Marbach I; Levitzki A Biochemistry; 1999 Oct; 38(40):13252-62. PubMed ID: 10529198 [TBL] [Abstract][Full Text] [Related]
69. Two types of RAS mutants that dominantly interfere with activators of RAS. Jung V; Wei W; Ballester R; Camonis J; Mi S; Van Aelst L; Wigler M; Broek D Mol Cell Biol; 1994 Jun; 14(6):3707-18. PubMed ID: 8196614 [TBL] [Abstract][Full Text] [Related]
70. Interactions between adenylyl cyclase, CAP and RAS from Saccharomyces cerevisiae. Mintzer KA; Field J Cell Signal; 1994 Aug; 6(6):681-94. PubMed ID: 7531994 [TBL] [Abstract][Full Text] [Related]
71. Phosphorylation of the RAS2 gene product by protein kinase A inhibits the activation of yeast adenylyl cyclase. Resnick RJ; Racker E Proc Natl Acad Sci U S A; 1988 Apr; 85(8):2474-8. PubMed ID: 3128788 [TBL] [Abstract][Full Text] [Related]
72. Site-directed mutagenesis of the Saccharomyces cerevisiae CDC25 gene: effects on mitotic growth and cAMP signalling. Schomerus C; Munder T; Küntzel H Mol Gen Genet; 1990 Sep; 223(3):426-32. PubMed ID: 2176715 [TBL] [Abstract][Full Text] [Related]
73. Mutants of H-ras that interfere with RAS effector function in Saccharomyces cerevisiae. Michaeli T; Field J; Ballester R; O'Neill K; Wigler M EMBO J; 1989 Oct; 8(10):3039-44. PubMed ID: 2684634 [TBL] [Abstract][Full Text] [Related]
74. Control of Saccharomyces cerevisiae catalase T gene (CTT1) expression by nutrient supply via the RAS-cyclic AMP pathway. Bissinger PH; Wieser R; Hamilton B; Ruis H Mol Cell Biol; 1989 Mar; 9(3):1309-15. PubMed ID: 2542766 [TBL] [Abstract][Full Text] [Related]
75. Reconstitution of the GTP-dependent adenylate cyclase from products of the yeast CYR1 and RAS2 genes in Escherichia coli. Uno I; Mitsuzawa H; Matsumoto K; Tanaka K; Oshima T; Ishikawa T Proc Natl Acad Sci U S A; 1985 Dec; 82(23):7855-9. PubMed ID: 2999779 [TBL] [Abstract][Full Text] [Related]
76. New roles for CDC25 in growth control, galactose regulation and cellular differentiation in Saccharomyces cerevisiae. Folch-Mallol JL; Martínez LM; Casas SJ; Yang R; Martínez-Anaya C; López L; Hernández A; Nieto-Sotelo J Microbiology (Reading); 2004 Sep; 150(Pt 9):2865-2879. PubMed ID: 15347746 [TBL] [Abstract][Full Text] [Related]
77. Rigorous feedback control of cAMP levels in Saccharomyces cerevisiae. Nikawa J; Cameron S; Toda T; Ferguson KM; Wigler M Genes Dev; 1987 Nov; 1(9):931-7. PubMed ID: 2828175 [TBL] [Abstract][Full Text] [Related]
78. Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Thevelein JM; de Winde JH Mol Microbiol; 1999 Sep; 33(5):904-18. PubMed ID: 10476026 [TBL] [Abstract][Full Text] [Related]
79. IRA1, an inhibitory regulator of the RAS-cyclic AMP pathway in Saccharomyces cerevisiae. Tanaka K; Matsumoto K; Toh-E A Mol Cell Biol; 1989 Feb; 9(2):757-68. PubMed ID: 2540426 [TBL] [Abstract][Full Text] [Related]
80. Membrane-anchoring domains of Cdc25p, a Saccharomyces cerevisiae ras exchange factor. Garreau H; Geymonat M; Renault G; Jacquet M Biol Cell; 1996; 86(2-3):93-102. PubMed ID: 8893498 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]