These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 8195293)

  • 1. On the localization of voltage-sensitive calcium channels in the flagella of Chlamydomonas reinhardtii.
    Beck C; Uhl R
    J Cell Biol; 1994 Jun; 125(5):1119-25. PubMed ID: 8195293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A motility in the eukaryotic flagellum unrelated to flagellar beating.
    Kozminski KG; Johnson KA; Forscher P; Rosenbaum JL
    Proc Natl Acad Sci U S A; 1993 Jun; 90(12):5519-23. PubMed ID: 8516294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Chlamydomonas voltage-gated calcium channel and its interaction with photoreceptor support VGCC modulated photobehavioral response in the green alga.
    Sanyal SK; Awasthi M; Ranjan P; Sharma S; Pandey GK; Kateriya S
    Int J Biol Macromol; 2023 Aug; 245():125492. PubMed ID: 37343610
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of flagellar biogenesis by a calcium dependent protein kinase in Chlamydomonas reinhardtii.
    Liang Y; Pan J
    PLoS One; 2013; 8(7):e69902. PubMed ID: 23936117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation and characterization of novel Chlamydomonas mutants that display phototaxis but not photophobic response.
    Matsuda A; Yoshimura K; Sineshchekov OA; Hirono M; Kamiya R
    Cell Motil Cytoskeleton; 1998; 41(4):353-62. PubMed ID: 9858159
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of flagellar size control using a mutant of Chlamydomonas reinhardtii with a variable number of flagella.
    Kuchka MR; Jarvik JW
    J Cell Biol; 1982 Jan; 92(1):170-5. PubMed ID: 7056798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chlamydomonas CAV2 encodes a voltage- dependent calcium channel required for the flagellar waveform conversion.
    Fujiu K; Nakayama Y; Yanagisawa A; Sokabe M; Yoshimura K
    Curr Biol; 2009 Jan; 19(2):133-9. PubMed ID: 19167228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intraflagellar transport (IFT) cargo: IFT transports flagellar precursors to the tip and turnover products to the cell body.
    Qin H; Diener DR; Geimer S; Cole DG; Rosenbaum JL
    J Cell Biol; 2004 Jan; 164(2):255-66. PubMed ID: 14718520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Centrin plays an essential role in microtubule severing during flagellar excision in Chlamydomonas reinhardtii.
    Sanders MA; Salisbury JL
    J Cell Biol; 1994 Mar; 124(5):795-805. PubMed ID: 8120100
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis and modeling of katanin function in flagellar length control.
    Kannegaard E; Rego EH; Schuck S; Feldman JL; Marshall WF
    Mol Biol Cell; 2014 Nov; 25(22):3686-98. PubMed ID: 25143397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flagellar regeneration in Chlamydomonas reinhardtii: evidence that cycloheximide pulses induce a delay in morphogenesis.
    Farrell KW
    J Cell Sci; 1976 May; 20(3):639-54. PubMed ID: 1270533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of force generation during flagellar assembly through optical trapping of free-swimming Chlamydomonas reinhardtii.
    McCord RP; Yukich JN; Bernd KK
    Cell Motil Cytoskeleton; 2005 Jul; 61(3):137-44. PubMed ID: 15887297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flagellar root contraction and nuclear movement during flagellar regeneration in Chlamydomonas reinhardtii.
    Salisbury JL; Sanders MA; Harpst L
    J Cell Biol; 1987 Oct; 105(4):1799-805. PubMed ID: 3667698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flagellar elongation and shortening in Chlamydomonas. The use of cycloheximide and colchicine to study the synthesis and assembly of flagellar proteins.
    Rosenbaum JL; Moulder JE; Ringo DL
    J Cell Biol; 1969 May; 41(2):600-19. PubMed ID: 5783876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation of nuclear and flagellar basal apparatus proteins during flagellar regeneration in Chlamydomonas reinhardtii.
    Harper JD; Sanders MA; Salisbury JL
    J Cell Biol; 1993 Aug; 122(4):877-86. PubMed ID: 8349736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of flagellar length in Chlamydomonas.
    Tuxhorn J; Daise T; Dentler WL
    Cell Motil Cytoskeleton; 1998; 40(2):133-46. PubMed ID: 9634211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The LF1 gene of Chlamydomonas reinhardtii encodes a novel protein required for flagellar length control.
    Nguyen RL; Tam LW; Lefebvre PA
    Genetics; 2005 Mar; 169(3):1415-24. PubMed ID: 15489537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GFP as a tool for the analysis of proteins in the flagellar basal apparatus of Chlamydomonas.
    Schoppmeier J; Mages W; Lechtreck KF
    Cell Motil Cytoskeleton; 2005 Aug; 61(4):189-200. PubMed ID: 15940689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Function and dynamics of PKD2 in Chlamydomonas reinhardtii flagella.
    Huang K; Diener DR; Mitchell A; Pazour GJ; Witman GB; Rosenbaum JL
    J Cell Biol; 2007 Nov; 179(3):501-14. PubMed ID: 17984324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The conserved ciliary protein Bug22 controls planar beating of Chlamydomonas flagella.
    Meng D; Cao M; Oda T; Pan J
    J Cell Sci; 2014 Jan; 127(Pt 2):281-7. PubMed ID: 24259666
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.