BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 8195526)

  • 1. Critical capillary oxygen partial pressure and lactate threshold in patients with cardiovascular disease.
    Koike A; Wasserman K; Taniguchi K; Hiroe M; Marumo F
    J Am Coll Cardiol; 1994 Jun; 23(7):1644-50. PubMed ID: 8195526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of dobutamine on critical capillary PO(2) and lactic acidosis threshold in patients with cardiovascular disease.
    Koike A; Kobayashi K; Adachi H; Shimizu N; Itoh H; Hiroe M; Wasserman K
    Chest; 2001 Oct; 120(4):1218-25. PubMed ID: 11591564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Mechanisms facilitating oxygen delivery during exercise in patients with chronic heart failure].
    Agostoni P; Assanelli E; Guazzi M; Grazi M; Perego GB; Lomanto M; Cattadori G; Lauri G; Marenzi G
    Cardiologia; 1997 Jul; 42(7):743-50. PubMed ID: 9270180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical capillary PO2 and the role of lactate production in oxyhemoglobin dissociation during exercise.
    Wasserman K
    Adv Exp Med Biol; 1999; 471():321-33. PubMed ID: 10659163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lactic acidosis as a facilitator of oxyhemoglobin dissociation during exercise.
    Stringer W; Wasserman K; Casaburi R; Pórszász J; Maehara K; French W
    J Appl Physiol (1985); 1994 Apr; 76(4):1462-7. PubMed ID: 8045820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does anaerobic threshold correlate with maximal lactate steady-state?
    Aunola S; Rusko H
    J Sports Sci; 1992 Aug; 10(4):309-23. PubMed ID: 1387688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms and patterns of blood lactate increase during exercise in man.
    Wasserman K; Beaver WL; Whipp BJ
    Med Sci Sports Exerc; 1986 Jun; 18(3):344-52. PubMed ID: 3088380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renal oxygen and lactate metabolism in hemorrhagic shock. An experimental study.
    Nelimarkka O
    Acta Chir Scand Suppl; 1984; 518():1-44. PubMed ID: 6592913
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maximal perfusion of skeletal muscle in man.
    Andersen P; Saltin B
    J Physiol; 1985 Sep; 366():233-49. PubMed ID: 4057091
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of hypoxia on arterial and venous blood levels of oxygen, carbon dioxide, hydrogen ions and lactate during incremental forearm exercise.
    Yoshida T; Udo M; Chida M; Ichioka M; Makiguchi K
    Eur J Appl Physiol Occup Physiol; 1989; 58(7):772-7. PubMed ID: 2500338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of the exercise hyperkalemia: an alternate hypothesis.
    Wasserman K; Stringer WW; Casaburi R; Zhang YY
    J Appl Physiol (1985); 1997 Aug; 83(2):631-43. PubMed ID: 9262462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of hyperoxia on maximal leg O2 supply and utilization in men.
    Knight DR; Schaffartzik W; Poole DC; Hogan MC; Bebout DE; Wagner PD
    J Appl Physiol (1985); 1993 Dec; 75(6):2586-94. PubMed ID: 8125878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of pentoxifylline on muscle tissue oxygen tension (pO2) of patients with intermittent claudication before and after pedal ergometer exercise.
    Ehrly AM; Saeger-Lorenz K
    Angiology; 1987 Feb; 38(2 Pt 1):93-100. PubMed ID: 3548493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lactate and glucose exchange across the forearm, legs, and splanchnic bed during and after prolonged leg exercise.
    Ahlborg G; Felig P
    J Clin Invest; 1982 Jan; 69(1):45-54. PubMed ID: 7054242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling of external to cellular respiration during exercise: the wisdom of the body revisited.
    Wasserman K
    Am J Physiol; 1994 Apr; 266(4 Pt 1):E519-39. PubMed ID: 8178973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determinants of maximal exercise VO2 during single leg knee-extensor exercise in humans.
    Richardson RS; Knight DR; Poole DC; Kurdak SS; Hogan MC; Grassi B; Wagner PD
    Am J Physiol; 1995 Apr; 268(4 Pt 2):H1453-61. PubMed ID: 7733346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of different blood sampling sites and analyses on the relationship between exercise intensity and 4.0 mmol.l-1 blood lactate concentration.
    Foxdal P; Sjödin A; Ostman B; Sjödin B
    Eur J Appl Physiol Occup Physiol; 1991; 63(1):52-4. PubMed ID: 1915332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Submaximal exercise testing using lactate threshold and venous oxygen tension as endpoints in normal dogs and in dogs with heart failure.
    Kittleson MD; Johnson LE; Pion PD
    J Vet Intern Med; 1996; 10(1):21-7. PubMed ID: 8965264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exercise O2 transport model assuming zero cytochrome PO2 at VO2 max.
    Severinghaus JW
    J Appl Physiol (1985); 1994 Aug; 77(2):671-8. PubMed ID: 8002513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-term training increases human muscle MCT1 and femoral venous lactate in relation to muscle lactate.
    Bonen A; McCullagh KJ; Putman CT; Hultman E; Jones NL; Heigenhauser GJ
    Am J Physiol; 1998 Jan; 274(1):E102-7. PubMed ID: 9458754
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.