BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

422 related articles for article (PubMed ID: 8195790)

  • 1. Nonlinear propagation of agonist-induced cytoplasmic calcium waves in single astrocytes.
    Yagodin SV; Holtzclaw L; Sheppard CA; Russell JT
    J Neurobiol; 1994 Mar; 25(3):265-80. PubMed ID: 8195790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Intracellular calcium channels, hormone receptors and intercellular calcium waves].
    Tordjmann T; Tran D; Berthon B; Jacquemin E; Guillon G; Combettes L; Claret M
    C R Seances Soc Biol Fil; 1998; 192(1):149-57. PubMed ID: 9759360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sarcoplasmic reticulum, calcium waves and myometrial signalling.
    Young RC
    Novartis Found Symp; 2002; 246():174-82; discussion 182-8, 221-7. PubMed ID: 12164308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subcellular calcium oscillators and calcium influx support agonist-induced calcium waves in cultured astrocytes.
    Yagodin S; Holtzclaw LA; Russell JT
    Mol Cell Biochem; 1995; 149-150():137-44. PubMed ID: 8569723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glutamate-induced calcium signaling in astrocytes.
    Kim WT; Rioult MG; Cornell-Bell AH
    Glia; 1994 Jun; 11(2):173-84. PubMed ID: 7927645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spontaneous changes in intracellular calcium concentration in type I astrocytes from rat cerebral cortex in primary culture.
    Fatatis A; Russell JT
    Glia; 1992; 5(2):95-104. PubMed ID: 1349589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A mathematical model of agonist-induced propagation of calcium waves in astrocytes.
    Roth BJ; Yagodin SV; Holtzclaw L; Russell JT
    Cell Calcium; 1995 Jan; 17(1):53-64. PubMed ID: 7553781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manganese suppresses ATP-dependent intercellular calcium waves in astrocyte networks through alteration of mitochondrial and endoplasmic reticulum calcium dynamics.
    Tjalkens RB; Zoran MJ; Mohl B; Barhoumi R
    Brain Res; 2006 Oct; 1113(1):210-9. PubMed ID: 16934782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signal-induced Ca2+ oscillations through the regulation of the inositol 1,4,5-trisphosphate-gated Ca2+ channel: an allosteric model.
    Laurent M; Claret M
    J Theor Biol; 1997 Jun; 186(3):307-26. PubMed ID: 9219669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular free Ca2+ elevations in cultured astroglia induced by neuroligands playing a role in cerebral ischemia.
    Torday C; Fónagy A; Latzkovits L
    Acta Chir Hung; 1997; 36(1-4):362-3. PubMed ID: 9408402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of type 2 inositol 1,4,5-trisphosphate receptor distribution and subcellular Ca2+ release sites that support Ca2+ waves in cultured astrocytes.
    Sheppard CA; Simpson PB; Sharp AH; Nucifora FC; Ross CA; Lange GD; Russell JT
    J Neurochem; 1997 Jun; 68(6):2317-27. PubMed ID: 9166724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence that Ca2+-waves in Xenopus melanotropes depend on calcium-induced calcium release: a fluorescence correlation microscopy and linescanning study.
    Koopman WJ; Hink MA; Visser AJ; Roubos EW; Jenks BG
    Cell Calcium; 1999; 26(1-2):59-67. PubMed ID: 10892571
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interplay between Ca2+ release and Ca2+ influx underlies localized hyperpolarization-induced [Ca2+]i waves in prostatic cells.
    Perret S; Cantereau A; Audin J; Dufy B; Georgescauld D
    Cell Calcium; 1999 Apr; 25(4):297-311. PubMed ID: 10456227
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Intra- and intercellular Ca(2+)-signal transduction].
    Himpens B; Vereecke J
    Verh K Acad Geneeskd Belg; 2000; 62(6):501-63. PubMed ID: 11196579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The mechanism mediating regenerative intercellular Ca2+ waves in the blowfly salivary gland.
    Zimmermann B; Walz B
    EMBO J; 1999 Jun; 18(12):3222-31. PubMed ID: 10369663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The mechanism of propagation of intracellular calcium waves in cultured human uterine myocytes.
    Young RC; Zhang P
    Am J Obstet Gynecol; 2001 May; 184(6):1228-34. PubMed ID: 11349193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the endoplasmic reticulum in shaping calcium dynamics in human lens cells.
    Williams MR; Riach RA; Collison DJ; Duncan G
    Invest Ophthalmol Vis Sci; 2001 Apr; 42(5):1009-17. PubMed ID: 11274079
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for the involvement of a small subregion of the endoplasmic reticulum in the inositol trisphosphate receptor-induced activation of Ca2+ inflow in rat hepatocytes.
    Gregory RB; Wilcox RA; Berven LA; van Straten NC; van der Marel GA; van Boom JH; Barritt GJ
    Biochem J; 1999 Jul; 341 ( Pt 2)(Pt 2):401-8. PubMed ID: 10393099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na+ entry via glutamate transporter activates the reverse Na+/Ca2+ exchange and triggers Ca(i)2+-induced Ca2+ release in rat cerebellar Type-1 astrocytes.
    Rojas H; Colina C; Ramos M; Benaim G; Jaffe EH; Caputo C; DiPolo R
    J Neurochem; 2007 Mar; 100(5):1188-202. PubMed ID: 17316398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intercellular Ca2+ wave propagation through gap-junctional Ca2+ diffusion: a theoretical study.
    Höfer T; Politi A; Heinrich R
    Biophys J; 2001 Jan; 80(1):75-87. PubMed ID: 11159384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.