BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 8195833)

  • 21. Brodimoprim, a new bacterial dihydrofolate reductase inhibitor: a minireview.
    Periti P
    J Chemother; 1995 Jun; 7(3):221-3. PubMed ID: 7562018
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A rapid assay for dihydropteroate synthase activity suitable for identification of inhibitors.
    Fernley RT; Iliades P; Macreadie I
    Anal Biochem; 2007 Jan; 360(2):227-34. PubMed ID: 17134675
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enhanced in vitro activity of dihydrofolate reductase and dihydropteroase synthase inhibitors in combination against Nocardia spp.
    Thielking DM; Destefano MS; Cynamon MH; Yeo AE
    Antimicrob Agents Chemother; 2003 Mar; 47(3):1174. PubMed ID: 12604567
    [No Abstract]   [Full Text] [Related]  

  • 24. New antifolate 4,4'-diaminodiphenyl sulfone substituted 2,4-diamino-5-benzylpyrimidines. Proof of their dual mode of action and autosynergism.
    Wiese M; Schmalz D; Seydel JK
    Arch Pharm (Weinheim); 1996 Mar; 329(3):161-8. PubMed ID: 9005816
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Pneumocystis carinii dihydropteroate synthase but not dihydrofolate reductase gene mutations correlate with prior trimethoprim-sulfamethoxazole or dapsone use.
    Ma L; Borio L; Masur H; Kovacs JA
    J Infect Dis; 1999 Dec; 180(6):1969-78. PubMed ID: 10558954
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Molecular docking and simulation study for synthesis of alternative dapsone derivative as a newer antileprosy drug in multidrug therapy.
    Swain SS; Paidesetty SK; Dehury B; Sahoo J; Vedithi SC; Mahapatra N; Hussain T; Padhy RN
    J Cell Biochem; 2018 Dec; 119(12):9838-9852. PubMed ID: 30125973
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Search for newer antileprosy drugs.
    Dhople AM
    Indian J Lepr; 2000; 72(1):5-20. PubMed ID: 10935183
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antibacterial activities of epiroprim, a new dihydrofolate reductase inhibitor, alone and in combination with dapsone.
    Locher HH; Schlunegger H; Hartman PG; Angehrn P; Then RL
    Antimicrob Agents Chemother; 1996 Jun; 40(6):1376-81. PubMed ID: 8726004
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Studies in mice of the action of DDS against Mycobacterium leprae.
    Shepard CC
    Int J Lepr Other Mycobact Dis; 1967; 35(4):616-24. PubMed ID: 4869694
    [No Abstract]   [Full Text] [Related]  

  • 30. Inhibitory activity and mode of action of diaminodiphenylsulfone in cell-free folate-synthesizing systems prepared from Mycobacterium lufu and Mycobacterium leprae. A comparison.
    Kulkarni VM; Seydel JK
    Chemotherapy; 1983; 29(1):58-67. PubMed ID: 6339181
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Inhibitors of de novo folate enzymes in Plasmodium falciparum.
    Nzila A
    Drug Discov Today; 2006 Oct; 11(19-20):939-44. PubMed ID: 16997145
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of subinhibitory concentrations of brodimoprim and trimethoprim on the adhesiveness, hydrophobicity, hemagglutination and motility of Escherichia coli.
    Braga PC; Dal Sasso M; Maci S; Reggio S; Piatti G
    Chemotherapy; 1995; 41(1):50-8. PubMed ID: 7875023
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 2,4-Diamino-5-benzylpyrimidines and analogues as antibacterial agents. 5. 3',5'-Dimethoxy-4'-substituted-benzyl analogues of trimethoprim.
    Roth B; Aig E; Rauckman BS; Strelitz JZ; Phillips AP; Ferone R; Bushby SR; Sigel CW
    J Med Chem; 1981 Aug; 24(8):933-41. PubMed ID: 7035668
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechansism of action of DDS.
    Hasting RC
    Int J Lepr Other Mycobact Dis; 1980 Mar; 48(1):65. PubMed ID: 6988348
    [No Abstract]   [Full Text] [Related]  

  • 35. Crystal structure of Mycobacterium tuberculosis 7,8-dihydropteroate synthase in complex with pterin monophosphate: new insight into the enzymatic mechanism and sulfa-drug action.
    Baca AM; Sirawaraporn R; Turley S; Sirawaraporn W; Hol WG
    J Mol Biol; 2000 Oct; 302(5):1193-212. PubMed ID: 11007651
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Folate-synthesizing enzyme system as target for development of inhibitors and inhibitor combinations against Candida albicans-synthesis and biological activity of new 2,4-diaminopyrimidines and 4'-substituted 4-aminodiphenyl sulfones.
    Otzen T; Wempe EG; Kunz B; Bartels R; Lehwark-Yvetot G; Hänsel W; Schaper KJ; Seydel JK
    J Med Chem; 2004 Jan; 47(1):240-53. PubMed ID: 14695838
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experiments to demonstrate a synergistic action between sulfonamides or trimethoprim and 5-fluro-2'-deoxyuridine against Escherichia coli.
    Then R
    Arzneimittelforschung; 1974 Dec; 24(12):1949-52. PubMed ID: 4281306
    [No Abstract]   [Full Text] [Related]  

  • 38. Detection of externally induced impairments in single bacterial cells by laser microbe mass analysis.
    Seydel U; Lindner B; Seydel JK; Brandenburt K
    Int J Lepr Other Mycobact Dis; 1982 Mar; 50(1):90-5. PubMed ID: 6804403
    [TBL] [Abstract][Full Text] [Related]  

  • 39. DDS sensitivity of mycobacteria. Antagonistic effect of PABA for M. ulcerans and M. kansasii.
    Pattyn SR; van Ermengem J
    Int J Lepr Other Mycobact Dis; 1968; 36(4):427-31. PubMed ID: 5753812
    [No Abstract]   [Full Text] [Related]  

  • 40. Directed evolution of trimethoprim resistance in Escherichia coli.
    Watson M; Liu JW; Ollis D
    FEBS J; 2007 May; 274(10):2661-71. PubMed ID: 17451440
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.