These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 8196701)

  • 21. Sodium channels contribute to microglia/macrophage activation and function in EAE and MS.
    Craner MJ; Damarjian TG; Liu S; Hains BC; Lo AC; Black JA; Newcombe J; Cuzner ML; Waxman SG
    Glia; 2005 Jan; 49(2):220-9. PubMed ID: 15390090
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Distribution of sodium and potassium channels as well as myelin associated glycoprotein (MAG) during the early stages of Wallerian degeneration.
    Martinez AM
    J Submicrosc Cytol Pathol; 1999 Jan; 31(1):73-81. PubMed ID: 10363356
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Voltage-gated sodium channels and the molecular pathogenesis of pain: a review.
    Waxman SG; Cummins TR; Dib-Hajj SD; Black JA
    J Rehabil Res Dev; 2000; 37(5):517-28. PubMed ID: 11322150
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Delayed implantation of intramedullary chitosan channels containing nerve grafts promotes extensive axonal regeneration after spinal cord injury.
    Nomura H; Baladie B; Katayama Y; Morshead CM; Shoichet MS; Tator CH
    Neurosurgery; 2008 Jul; 63(1):127-41; discussion 141-3. PubMed ID: 18728578
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Oxaliplatin, an anticancer agent that affects both Na+ and K+ channels in frog peripheral myelinated axons.
    Benoit E; Brienza S; Dubois JM
    Gen Physiol Biophys; 2006 Sep; 25(3):263-76. PubMed ID: 17197725
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Changes in sodium channel expression following trigeminal nerve injury.
    Davies SL; Loescher AR; Clayton NM; Bountra C; Robinson PP; Boissonade FM
    Exp Neurol; 2006 Nov; 202(1):207-16. PubMed ID: 16908020
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Induction of sodium channel clustering by oligodendrocytes.
    Kaplan MR; Meyer-Franke A; Lambert S; Bennett V; Duncan ID; Levinson SR; Barres BA
    Nature; 1997 Apr; 386(6626):724-8. PubMed ID: 9109490
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Altered localization of Cav1.2 (L-type) calcium channels in nerve fibers, Schwann cells, odontoblasts, and fibroblasts of tooth pulp after tooth injury.
    Westenbroek RE; Anderson NL; Byers MR
    J Neurosci Res; 2004 Feb; 75(3):371-83. PubMed ID: 14743450
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Axonal conduction and injury in multiple sclerosis: the role of sodium channels.
    Waxman SG
    Nat Rev Neurosci; 2006 Dec; 7(12):932-41. PubMed ID: 17115075
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mutation in the Na+ channel subunit SCN1B produces paradoxical changes in peripheral nerve excitability.
    Kiernan MC; Krishnan AV; Lin CS; Burke D; Berkovic SF
    Brain; 2005 Aug; 128(Pt 8):1841-6. PubMed ID: 15857929
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sodium channel blockade with phenytoin protects spinal cord axons, enhances axonal conduction, and improves functional motor recovery after contusion SCI.
    Hains BC; Saab CY; Lo AC; Waxman SG
    Exp Neurol; 2004 Aug; 188(2):365-77. PubMed ID: 15246836
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sodium Channels, Mitochondria, and Axonal Degeneration in Peripheral Neuropathy.
    Persson AK; Hoeijmakers JGJ; Estacion M; Black JA; Waxman SG
    Trends Mol Med; 2016 May; 22(5):377-390. PubMed ID: 27085813
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neurotoxicological effects and the mode of action of pyrethroid insecticides.
    Vijverberg HP; van den Bercken J
    Crit Rev Toxicol; 1990; 21(2):105-26. PubMed ID: 1964560
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Na+ channel accumulation on axolemma of afferent endings in nerve end neuromas in Apteronotus.
    Devor M; Keller CH; Deerinck TJ; Levinson SR; Ellisman MH
    Neurosci Lett; 1989 Jul; 102(2-3):149-54. PubMed ID: 2554205
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pharmacologic intervention in axonal excitability: in vivo assessment of nodal persistent sodium currents in human neuropathies.
    Kuwabara S; Misawa S
    Curr Mol Pharmacol; 2008 Jan; 1(1):61-7. PubMed ID: 20021424
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Axonal excitability changes and acute symptoms of oxaliplatin treatment: In vivo evidence for slowed sodium channel inactivation.
    Heide R; Bostock H; Ventzel L; Grafe P; Bergmans J; Fuglsang-Frederiksen A; Finnerup NB; Tankisi H
    Clin Neurophysiol; 2018 Mar; 129(3):694-706. PubMed ID: 29233604
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distribution and possible abnormality in antigenic composition of sodium channels in peripheral axons of dystrophic mice.
    Meiri H; Weiss Y; Lallkin A; Collins I
    Brain Res; 1986 Oct; 384(2):355-61. PubMed ID: 2430665
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Axonal cytoskeleton].
    Arai T; Ichikawa M; Matsumoto G
    Tanpakushitsu Kakusan Koso; 1989 Sep; 34(12 Suppl):1704-14. PubMed ID: 2555844
    [No Abstract]   [Full Text] [Related]  

  • 39. Role of axonal sodium-channel band in neuronal excitability.
    Wang L; Wang H; Yu L; Chen Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Nov; 84(5 Pt 1):052901. PubMed ID: 22181462
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sodium-mediated axonal degeneration in inflammatory demyelinating disease.
    Bechtold DA; Smith KJ
    J Neurol Sci; 2005 Jun; 233(1-2):27-35. PubMed ID: 15894334
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.