These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 8197137)

  • 1. Cell size predicts morphological complexity in the brains of frogs and salamanders.
    Roth G; Blanke J; Wake DB
    Proc Natl Acad Sci U S A; 1994 May; 91(11):4796-800. PubMed ID: 8197137
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Similarities and differences in the cytoarchitecture of the tectum of frogs and salamanders.
    Dicke U; Roth G
    Acta Biol Hung; 1996; 47(1-4):41-59. PubMed ID: 9124009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome size, secondary simplification, and the evolution of the brain in salamanders.
    Roth G; Nishikawa KC; Wake DB
    Brain Behav Evol; 1997 Jul; 50(1):50-9. PubMed ID: 9209766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Influence of Genome and Cell Size on Brain Morphology in Amphibians.
    Roth G; Walkowiak W
    Cold Spring Harb Perspect Biol; 2015 Aug; 7(9):a019075. PubMed ID: 26261281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytoarchitecture of the tectum mesencephali in salamanders: a Golgi and HRP study.
    Roth G; Naujoks-Manteuffel C; Grunwald W
    J Comp Neurol; 1990 Jan; 291(1):27-42. PubMed ID: 1688890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paedomorphosis and simplification in the nervous system of salamanders.
    Roth G; Nishikawa KC; Naujoks-Manteuffel C; Schmidt A; Wake DB
    Brain Behav Evol; 1993; 42(3):137-70. PubMed ID: 8364715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Brain size and morphology in miniaturized plethodontid salamanders.
    Roth G; Blanke J; Ohle M
    Brain Behav Evol; 1995; 45(2):84-95. PubMed ID: 7749728
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Miniaturization, Genome Size, and Biological Size in a Diverse Clade of Salamanders.
    Decena-Segarra LP; Bizjak-Mali L; Kladnik A; Sessions SK; Rovito SM
    Am Nat; 2020 Nov; 196(5):634-648. PubMed ID: 33064588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of substance P-like, leucine-enkephalin-like, and bombesine-like immunoreactivity and acetylcholinesterase activity in the visual system of salamanders.
    Schmidt A; Roth G; Ernst M
    J Comp Neurol; 1989 Oct; 288(1):123-35. PubMed ID: 2477410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A stem batrachian from the Early Permian of Texas and the origin of frogs and salamanders.
    Anderson JS; Reisz RR; Scott D; Fröbisch NB; Sumida SS
    Nature; 2008 May; 453(7194):515-8. PubMed ID: 18497824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of the tectum in Gymnophiones, with comparison to other amphibians.
    Schmidt A; Wake MH
    J Morphol; 1998 Jun; 236(3):233-246. PubMed ID: 29852675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Digit reduction, body size, and paedomorphosis in salamanders.
    Wiens JJ; Hoverman JT
    Evol Dev; 2008; 10(4):449-63. PubMed ID: 18638322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome size drives morphological evolution in organ-specific ways.
    Itgen MW; Natalie GR; Siegel DS; Sessions SK; Mueller RL
    Evolution; 2022 Jul; 76(7):1453-1468. PubMed ID: 35657770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular migration and morphological complexity in the caecilian brain.
    Schmidt A; Wake MH
    J Morphol; 1997 Jan; 231(1):11-27. PubMed ID: 29852703
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain regions and encephalization in anurans: adaptation or stability?
    Taylor GM; Nol E; Boire D
    Brain Behav Evol; 1995; 45(2):96-109. PubMed ID: 7749729
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative morphology of the amphibian opercularis system: I. General design features and functional interpretation.
    Hetherington TE; Jaslow AP; Lombard RE
    J Morphol; 1986 Oct; 190(1):43-61. PubMed ID: 3783718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphology of retinal ganglion cells in lungless salamanders (fam. Plethodontidae): an HRP and Golgi study.
    Linke R; Roth G
    J Comp Neurol; 1989 Nov; 289(3):361-74. PubMed ID: 2478599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural substrate for motor control of feeding in amphibians.
    Dicke U; Roth G; Matsushima T
    Acta Anat (Basel); 1998; 163(3):127-43. PubMed ID: 9973634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inducible offences affect predator-prey interactions and life-history plasticity in both predators and prey.
    Kishida O; Costa Z; Tezuka A; Michimae H
    J Anim Ecol; 2014 Jul; 83(4):899-906. PubMed ID: 24320092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Despite Buffers, Experimental Forest Clearcuts Impact Amphibian Body Size and Biomass.
    Veysey Powell JS; Babbitt KJ
    PLoS One; 2015; 10(11):e0143505. PubMed ID: 26600386
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.