BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8197154)

  • 1. Stable intrachain and interchain complexes of neurofilament peptides: a putative link between Al3+ and Alzheimer disease.
    Hollósi M; Shen ZM; Perczel A; Fasman GD
    Proc Natl Acad Sci U S A; 1994 May; 91(11):4902-6. PubMed ID: 8197154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study of Al3+ binding and conformational properties of the alanine-substituted C-terminal domain of the NF-M protein and its relevance to Alzheimer's disease.
    Shen ZM; Perczel A; Hollósi M; Nagypál I; Fasman GD
    Biochemistry; 1994 Aug; 33(32):9627-36. PubMed ID: 8068639
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complexes of aluminium with peptide ligands: a Fourier transform IR spectroscopic study.
    Hollósi M; Holly S; Majer Z; Laczkó I; Fasman GD
    Biopolymers; 1995 Sep; 36(3):381-9. PubMed ID: 7669921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The solubilization of model Alzheimer tangles: reversing the beta-sheet conformation induced by aluminum with silicates.
    Fasman GD; Moore CD
    Proc Natl Acad Sci U S A; 1994 Nov; 91(23):11232-5. PubMed ID: 7972040
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal ion-induced conformational changes of phosphorylated fragments of human neurofilament (NF-M) protein.
    Hollósi M; Urge L; Perczel A; Kajtár J; Teplán I; Otvös L; Fasman GD
    J Mol Biol; 1992 Feb; 223(3):673-82. PubMed ID: 1542114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FT-IR spectroscopy indicates that Ca(2+)-binding to phosphorylated C-terminal fragments of the midsized neurofilament protein subunit results in beta-sheet formation and beta-aggregation.
    Holly S; Laczkó I; Fasman GD; Hollósi M
    Biochem Biophys Res Commun; 1993 Dec; 197(2):755-62. PubMed ID: 8267612
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solubilization of beta-amyloid-(1-42)-peptide: reversing the beta-sheet conformation induced by aluminum with silicates.
    Fasman GD; Perczel A; Moore CD
    Proc Natl Acad Sci U S A; 1995 Jan; 92(2):369-71. PubMed ID: 7831292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical characterization of Al(III) binding to KSPVPKSPVEEKG: Insights into the propensity of aluminum to interact with key sequences for neurofilament formation.
    Grande-Aztatzi R; Formoso E; Mujika JI; de Sancho D; Lopez X
    J Inorg Biochem; 2020 Sep; 210():111169. PubMed ID: 32679460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible beta-pleated sheet formation of a phosphorylated synthetic tau peptide.
    Lang E; Szendrei GI; Elekes I; Lee VM; Otvos L
    Biochem Biophys Res Commun; 1992 Jan; 182(1):63-9. PubMed ID: 1731800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphorylation loops in synthetic peptides of the human neurofilament protein middle-sized subunit.
    Otvos L; Hollosi M; Perczel A; Dietzschold B; Fasman GD
    J Protein Chem; 1988 Aug; 7(4):365-76. PubMed ID: 3151252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of synthetic Alzheimer beta-protein-derived analogs with aqueous aluminum: a low-field 27Al NMR investigation.
    Vyas SB; Duffy LK
    J Protein Chem; 1995 Nov; 14(8):633-44. PubMed ID: 8747424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ca(2+)-induced conformational transitions of phosphorylated peptides.
    Hollósi M; Otvös L; Urge L; Kajtár J; Perczel A; Laczkó I; Vadász Z; Fasman GD
    Biopolymers; 1993 Mar; 33(3):497-510. PubMed ID: 8461457
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-specific phosphorylation of Lys-Ser-Pro repeat peptides from neurofilament H by cyclin-dependent kinase 5: structural basis for substrate recognition.
    Sharma P; Barchi JJ; Huang X; Amin ND; Jaffe H; Pant HC
    Biochemistry; 1998 Apr; 37(14):4759-66. PubMed ID: 9537991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aluminum alters the electrophoretic properties of neurofilament proteins: role of phosphorylation state.
    Shea TB; Beermann ML; Nixon RA
    J Neurochem; 1992 Feb; 58(2):542-7. PubMed ID: 1729399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-function analysis of the glioma targeting NFL-TBS.40-63 peptide corresponding to the tubulin-binding site on the light neurofilament subunit.
    Berges R; Balzeau J; Takahashi M; Prevost C; Eyer J
    PLoS One; 2012; 7(11):e49436. PubMed ID: 23152907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic study of the interaction of aluminum ions with human transferrin.
    Tang S; MacColl R; Parsons PJ
    J Inorg Biochem; 1995 Nov; 60(3):175-85. PubMed ID: 8586971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca(2+)- and Al(3+)-induced conformational transitions of amyloid fragment H-Ile-Ile-Gly-Leu-Met-NH2.
    Laczkó I; Vass E; Soós K; Varga JL; Száraz S; Hollósi M; Penke B
    Arch Biochem Biophys; 1996 Nov; 335(2):381-7. PubMed ID: 8914936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilization of secondary structure of Alzheimer beta-protein by aluminum(III) ions and D-Asp substitutions.
    Vyas SB; Duffy LK
    Biochem Biophys Res Commun; 1995 Jan; 206(2):718-23. PubMed ID: 7826392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contact pair dynamics during folding of two small proteins: chicken villin head piece and the Alzheimer protein beta-amyloid.
    Mukherjee A; Bagchi B
    J Chem Phys; 2004 Jan; 120(3):1602-12. PubMed ID: 15268287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation-mediated conformational changes in the mouse neurofilament architecture: insight from a neurofilament brush model.
    Stevenson W; Chang R; Gebremichael Y
    J Mol Biol; 2011 Jan; 405(4):1101-18. PubMed ID: 21134382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.