These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 8197154)

  • 21. Aluminum-induced DNA synthesis in osteoblasts: mediation by a G-protein coupled cation sensing mechanism.
    Quarles LD; Hartle JE; Middleton JP; Zhang J; Arthur JM; Raymond JR
    J Cell Biochem; 1994 Sep; 56(1):106-17. PubMed ID: 7806584
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Identification of novel in vitro PKA phosphorylation sites on the low and middle molecular mass neurofilament subunits by mass spectrometry.
    Cleverley KE; Betts JC; Blackstock WP; Gallo JM; Anderton BH
    Biochemistry; 1998 Mar; 37(11):3917-30. PubMed ID: 9521713
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Calcium binding properties of synthetic gamma-carboxyglutamic acid-containing marine cone snail "sleeper" peptides, conantokin-G and conantokin-T.
    Prorok M; Warder SE; Blandl T; Castellino FJ
    Biochemistry; 1996 Dec; 35(51):16528-34. PubMed ID: 8987986
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Novel axonal distribution of neurofilament-H phosphorylated at the glycogen synthase kinase 3beta-phosphorylation site in its E-segment.
    Sasaki T; Ishiguro K; Hisanaga S
    J Neurosci Res; 2009 Nov; 87(14):3088-97. PubMed ID: 19530163
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of serine and threonine phosphorylation sites in beta-elimination/ethanethiol addition-modified proteins by electrospray tandem mass spectrometry and database searching.
    Jaffe H; Veeranna ; Pant HC
    Biochemistry; 1998 Nov; 37(46):16211-24. PubMed ID: 9819213
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aluminum induces neurofilament aggregation by stabilizing cross-bridging of phosphorylated c-terminal sidearms.
    Kushkuley J; Metkar S; Chan WK; Lee S; Shea TB
    Brain Res; 2010 Mar; 1322():118-23. PubMed ID: 20132798
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dynamics of mammalian high-molecular-weight neurofilament subunit phosphorylation in cultured rat sympathetic neurons.
    Clark EA; Lee VM
    J Neurosci Res; 1991 Sep; 30(1):116-23. PubMed ID: 1795396
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and conformational properties of phosphopeptides related to the human tau protein.
    Du JT; Li YM; Ma QF; Qiang W; Zhao YF; Abe H; Kanazawa K; Qin XR; Aoyagi R; Ishizuka Y; Nemoto T; Nakanishi H
    Regul Pept; 2005 Aug; 130(1-2):48-56. PubMed ID: 15869817
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An examination of the binding of aluminum to protein and mineral components of bone and teeth.
    Rowatt E; Sorensen ES; Triffit J; Viess A; Williams RJ
    J Inorg Biochem; 1997 Dec; 68(4):235-8. PubMed ID: 9397572
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation between O-GlcNAcylation and phosphorylation of neurofilament-M and their dysregulation in Alzheimer disease.
    Deng Y; Li B; Liu F; Iqbal K; Grundke-Iqbal I; Brandt R; Gong CX
    FASEB J; 2008 Jan; 22(1):138-45. PubMed ID: 17687114
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification of endogenous phosphorylation sites of bovine medium and low molecular weight neurofilament proteins by tandem mass spectrometry.
    Trimpin S; Mixon AE; Stapels MD; Kim MY; Spencer PS; Deinzer ML
    Biochemistry; 2004 Feb; 43(7):2091-105. PubMed ID: 14967049
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tyrosine- versus serine-phosphorylation leads to conformational changes in a synthetic tau peptide.
    Fabian H; Otvos L; Szendrei GI; Lang E; Mantsch HH
    J Biomol Struct Dyn; 1994 Dec; 12(3):573-9. PubMed ID: 7537044
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermodynamic consequences of incorporating 4-substituted proline derivatives into a small helical protein.
    Zheng TY; Lin YJ; Horng JC
    Biochemistry; 2010 May; 49(19):4255-63. PubMed ID: 20405858
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Target recognition by calmodulin: dissecting the kinetics and affinity of interaction using short peptide sequences.
    Bayley PM; Findlay WA; Martin SR
    Protein Sci; 1996 Jul; 5(7):1215-28. PubMed ID: 8819155
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Phosphorylation-dependent metal binding by alpha-synuclein peptide fragments.
    Liu LL; Franz KJ
    J Biol Inorg Chem; 2007 Feb; 12(2):234-47. PubMed ID: 17082919
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conformational studies on calcium binding by tBoc-Leu-Pro-Tyr-Ala-NHCH3, a tyrosine kinase substrate, in a nonpolar solvent.
    Ananthanarayanan VS; Saint-Jean A; Cheesman BV; Hughes DW; Bain AD
    J Biomol Struct Dyn; 1993 Dec; 11(3):509-28. PubMed ID: 8129870
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interactions of calmodulin with metal ions and with its target proteins revealed by conformation-sensitive monoclonal antibodies.
    Wolf T; Solomon B; Ivnitski D; Rishpon J; Fleminger G
    J Mol Recognit; 1998; 11(1-6):14-9. PubMed ID: 10076799
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ca2+-binding stoichiometry of calbindin D28k as assessed by spectroscopic analyses of synthetic peptide fragments.
    Akerfeldt KS; Coyne AN; Wilk RR; Thulin E; Linse S
    Biochemistry; 1996 Mar; 35(12):3662-9. PubMed ID: 8619985
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Conformational dynamics of neurofilament side-arms.
    Stevens MJ; Hoh JH
    J Phys Chem B; 2010 Jul; 114(27):8879-86. PubMed ID: 20557103
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Binding of copper (II) ion to an Alzheimer's tau peptide as revealed by MALDI-TOF MS, CD, and NMR.
    Ma QF; Li YM; Du JT; Kanazawa K; Nemoto T; Nakanishi H; Zhao YF
    Biopolymers; 2005 Oct; 79(2):74-85. PubMed ID: 15986501
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.