These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 8197180)

  • 41. Acceleration of vacuolar regeneration and cell growth by overexpression of an aquaporin NtTIP1;1 in tobacco BY-2 cells.
    Okubo-Kurihara E; Sano T; Higaki T; Kutsuna N; Hasezawa S
    Plant Cell Physiol; 2009 Jan; 50(1):151-60. PubMed ID: 19042915
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Suspensions of plant cells in microgravity.
    Hampp R; Naton B; Hoffmann E; Mehrle W
    Microgravity Sci Technol; 1990 Dec; 3(3):168-72. PubMed ID: 11541482
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Flow cytometric analysis of cytosolic pH of mesophyll cell protoplasts from the crabgrass Digitaria sanguinalis.
    Giglioli-Guivarc'h N; Pierre JN; Vidal J; Brown S
    Cytometry; 1996 Mar; 23(3):241-9. PubMed ID: 8974869
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Rice SPX-Major Facility Superfamily3, a Vacuolar Phosphate Efflux Transporter, Is Involved in Maintaining Phosphate Homeostasis in Rice.
    Wang C; Yue W; Ying Y; Wang S; Secco D; Liu Y; Whelan J; Tyerman SD; Shou H
    Plant Physiol; 2015 Dec; 169(4):2822-31. PubMed ID: 26424157
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transient expression of fluorescent fusion proteins in protoplasts of suspension cultured cells.
    Miao Y; Jiang L
    Nat Protoc; 2007; 2(10):2348-53. PubMed ID: 17947977
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The glycan substrate of the cytosolic (Pho 2) phosphorylase isozyme from Pisum sativum L.: identification, linkage analysis and subcellular localization.
    Fettke J; Eckermann N; Poeste S; Pauly M; Steup M
    Plant J; 2004 Sep; 39(6):933-46. PubMed ID: 15341635
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Investigating Bax subcellular localization and membrane integration.
    Dewson G
    Cold Spring Harb Protoc; 2015 May; 2015(5):467-71. PubMed ID: 25934936
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Uptake of isolated plant chromosomes by plant protoplasts.
    Szabados L; Hadlaczky G; Dudits D
    Planta; 1981 Feb; 151(2):141-5. PubMed ID: 24301721
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of the light signaling pathway in stomatal guard cells.
    Shimazaki K; Kinoshita T
    Methods Cell Biol; 1995; 49():501-13. PubMed ID: 8531780
    [No Abstract]   [Full Text] [Related]  

  • 50. Efficient uptake of flavonoids into parsley (Petroselinum hortense) vacuoles requires acylated glycosides.
    Matern U; Reichenbach C; Heller W
    Planta; 1986 Feb; 167(2):183-9. PubMed ID: 24241849
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Distribution of oleanolic acid glycosides in vacuoles and cell walls isolated from protoplasts and cells of Calendula officinalis leaves.
    Szakiel A; Kasprzyk Z
    Steroids; 1989; 53(3-5):501-11. PubMed ID: 2799856
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Parsley protoplasts retain differential responsiveness to u.v. light and fungal elicitor.
    Dangl JL; Hauffe KD; Lipphardt S; Hahlbrock K; Scheel D
    EMBO J; 1987 Sep; 6(9):2551-6. PubMed ID: 16453792
    [TBL] [Abstract][Full Text] [Related]  

  • 53. In situ localization of light-induced chalcone synthase mRNA, chalcone synthase, and flavonoid end products in epidermal cells of parsley leaves.
    Schmelzer E; Jahnen W; Hahlbrock K
    Proc Natl Acad Sci U S A; 1988 May; 85(9):2989-93. PubMed ID: 16578833
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Isolation of ;Vacuoplasts' from Poterioochromonas malhamensis.
    Jochem P; Thomson KS; Schwab D
    Plant Physiol; 1983 Oct; 73(2):418-21. PubMed ID: 16663231
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Light signal transduction in plants.
    Staub JM; Deng XW
    Photochem Photobiol; 1996 Dec; 64(6):897-905. PubMed ID: 8972630
    [No Abstract]   [Full Text] [Related]  

  • 56. Red and Near-Infrared Light-Directed Cytosolic Delivery of Two Different RNAs Using Photosensitive RNA Carriers.
    Shiraga K; Soe TH; Matsumoto S; Watanabe K; Ohtsuki T
    Bioconjug Chem; 2018 Sep; 29(9):3174-3179. PubMed ID: 30063334
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Isolation and characterization of microprotoplasts from APM-treated suspension cells ofNicotiana plumbaginifolia.
    Verhoeven HA; Ramulu KS
    Theor Appl Genet; 1991 Sep; 82(3):346-52. PubMed ID: 24213179
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Isolation of protoplasts by means of a "species-specific" autolysine in Chlamydomonas.
    Schlösser UG; Sachs H; Robinson DG
    Protoplasma; 1976; 88(1):51-64. PubMed ID: 1273306
    [No Abstract]   [Full Text] [Related]  

  • 59. Light signaling as cellular integrator of multiple environmental cues in plants.
    Kanojia A; Bhola D; Mudgil Y
    Physiol Mol Biol Plants; 2023 Oct; 29(10):1485-1503. PubMed ID: 38076763
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A proteomic study of the effect of UV-B on the regulatory mechanism of flavonoids metabolism in pea seedlings.
    Fu X; Xu Y; Lu M
    Front Nutr; 2023; 10():1184732. PubMed ID: 37255935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.