These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 819753)

  • 41. The trained circling rat: a model for inducing unilateral caudate dopamine metabolism.
    Yamamoto BK; Freed CR
    Nature; 1982 Jul; 298(5873):467-8. PubMed ID: 7088191
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The concentrations of amine metabolites in cerebrospinal fluid from normal and narcoleptic dogs [proceedings].
    Barchas JD; Dement WC; Faull K; Foutz AS; Holman RB
    J Physiol; 1979 Nov; 296():94P-95P. PubMed ID: 93641
    [No Abstract]   [Full Text] [Related]  

  • 43. On the origin of homovanillic acid (HVA) in the cerebrospinal fluid.
    Sourkes TL
    J Neural Transm; 1973; 34(2):153-7. PubMed ID: 4722573
    [No Abstract]   [Full Text] [Related]  

  • 44. Choline and physostigmine enhance haloperidol-induced HVA and DOPAC accumulation.
    Millington WR; Wurtman RJ
    Eur J Pharmacol; 1982 Jun; 80(4):431-4. PubMed ID: 7106193
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Acute choline administration in rat and mouse: no effect on dopamine metabolism in brain.
    Flentge F; Postema F; Medema HM; Van den Berg CJ
    Life Sci; 1981 Jul; 29(4):331-5. PubMed ID: 7278490
    [No Abstract]   [Full Text] [Related]  

  • 46. Metabolism and efflux of [3H]dopamine in rat neostriatum: presynaptic origin of 3,4-[3H]dihydroxyphenylacetic acid.
    Cubeddu LX; Hoffmann IS; Ferrari GB
    J Pharmacol Exp Ther; 1979 May; 209(2):165-75. PubMed ID: 255152
    [No Abstract]   [Full Text] [Related]  

  • 47. Alterations in cerebrospinal fluid dopamine metabolites following physostigmine infusion.
    Davis KL; Faull KF; Hollister LE; Barchas JD; Berger PA
    Psychopharmacology (Berl); 1981; 72(2):155-60. PubMed ID: 6782605
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evidence for a role of beta-endorphin in activity of nigrostriatal neurons in the rat.
    Lebrun I; Lebrun FL; Aizenstein ML
    Braz J Med Biol Res; 1988; 21(3):645-7. PubMed ID: 2976287
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Homovanillic acid in rat caudate and prefrontal cortex following phencyclidine and amphetamine.
    Bowers MB; Hoffman FJ
    Psychopharmacology (Berl); 1984; 84(1):136-7. PubMed ID: 6436882
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 3,4-Dihydroxyphenylacetic acid and homovanillic acid in rat plasma: possible indicators of central dopaminergic activity.
    Bacopoulos NG; Hattox SE; Roth RH
    Eur J Pharmacol; 1979 Jun; 56(3):225-36. PubMed ID: 477719
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [Changes in monoamine metabolites in the nucleus accumbens and locomotor activity by reserpine: an in vivo microdialysis study].
    Sugita R; Sawa Y; Nakazawa T; Yamauchi T
    Yakubutsu Seishin Kodo; 1988 Dec; 8(4):453-62. PubMed ID: 2471372
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The influence of 3,4-dihydroxyphenylacetic acid on the accumulation of 5-hydroxyindoleacetic acid in the choroid plexus and kidney cortex slices of rats.
    Huang JT; Wajda IJ
    Res Commun Chem Pathol Pharmacol; 1977 Apr; 16(4):649-68. PubMed ID: 870954
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Correlation between high-performance liquid chromatography and automated fluorimetric methods for the determination of dopamine, 3,4-dihydroxyphenylacetic acid, homovanillic acid and 5-hydroxyindoleacetic acid in nervous tissue and cerebrospinal fluid.
    Westerink BH
    J Chromatogr; 1982 Dec; 233():69-77. PubMed ID: 6186680
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Analysis of neurotransmitter metabolite concentrations in canine cerebrospinal fluid.
    Vaughn DM; Coleman E; Simpson ST; Satjawatcharaphong C
    Am J Vet Res; 1988 Aug; 49(8):1302-6. PubMed ID: 2459997
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Neurochemical changes in the substantiae nigrae and caudate nuclei following acute unilateral intranigral infusions of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).
    Sirinathsinghji DJ; Whittington PE; Audsley AR
    Brain Res; 1986 Dec; 399(2):339-45. PubMed ID: 2435361
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Neurochemical and activity changes in rats infected with Trypanosoma brucei gambiense.
    Stibbs HH
    J Parasitol; 1984 Jun; 70(3):428-32. PubMed ID: 6208349
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A model of dopamine metabolism in rat brain, assessed by the influence of drugs [proceedings].
    Dedek J; Gomeni R; Korf J
    Arch Int Physiol Biochim; 1979 Oct; 87(4):794-5. PubMed ID: 93908
    [No Abstract]   [Full Text] [Related]  

  • 58. Homovanillic acid: entry rate kinetics for transfer from plasma to cerebrospinal fluid.
    Prockop L; Fahn S; Barbour P
    Brain Res; 1974 Nov; 80(3):435-42. PubMed ID: 4425309
    [No Abstract]   [Full Text] [Related]  

  • 59. Brain concentrations of biogenic amines and their metabolites in two types of pyrogen-induced fever in rabbits.
    Gardey-Levassort C; Tanguy O; Lechat P
    J Neurochem; 1977 Jan; 28(1):177-82. PubMed ID: 13153
    [No Abstract]   [Full Text] [Related]  

  • 60. Aspects of influx and efflux of homovanillic acid of rat cerebrospinal fluid.
    Aizenstein ML; Korf J
    Brain Res; 1978 Jun; 149(1):129-40. PubMed ID: 656951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.