BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 8197584)

  • 1. Identification and characterization of striatal cell subtypes using in vivo intracellular recording and dye-labeling in rats: III. Morphological correlates and compartmental localization.
    Onn SP; Berger TW; Grace AA
    Synapse; 1994 Mar; 16(3):231-54. PubMed ID: 8197584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and characterization of striatal cell subtypes using in vivo intracellular recording in rats: I. Basic physiology and response to corticostriatal fiber stimulation.
    Onn SP; Berger TW; Grace AA
    Synapse; 1994 Mar; 16(3):161-80. PubMed ID: 8197579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alterations in electrophysiological activity and dye coupling of striatal spiny and aspiny neurons in dopamine-denervated rat striatum recorded in vivo.
    Onn SP; Grace AA
    Synapse; 1999 Jul; 33(1):1-15. PubMed ID: 10380846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and characterization of striatal cell subtypes using in vivo intracellular recording in rats: II. Membrane factors underlying paired-pulse response profiles.
    Onn SP; Berger TW; Grace AA
    Synapse; 1994 Mar; 16(3):195-210. PubMed ID: 8197582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial distributions of chemically identified intrinsic neurons in relation to patch and matrix compartments of rat neostriatum.
    Kubota Y; Kawaguchi Y
    J Comp Neurol; 1993 Jun; 332(4):499-513. PubMed ID: 8349845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrastructural localization of immunoreactive calbindin-D28k in the rat and monkey basal ganglia, including subcellular distribution with colloidal gold labeling.
    DiFiglia M; Christakos S; Aronin N
    J Comp Neurol; 1989 Jan; 279(4):653-65. PubMed ID: 2918090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parvalbumin-containing GABAergic interneurons in the rat neostriatum.
    Cowan RL; Wilson CJ; Emson PC; Heizmann CW
    J Comp Neurol; 1990 Dec; 302(2):197-205. PubMed ID: 2289971
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphological features of neurons containing calcium-binding proteins in the human striatum.
    Prensa L; Giménez-Amaya JM; Parent A
    J Comp Neurol; 1998 Jan; 390(4):552-63. PubMed ID: 9450535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular recording of identified neostriatal patch and matrix spiny cells in a slice preparation preserving cortical inputs.
    Kawaguchi Y; Wilson CJ; Emson PC
    J Neurophysiol; 1989 Nov; 62(5):1052-68. PubMed ID: 2585039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship of the axonal and dendritic geometry of spiny projection neurons to the compartmental organization of the neostriatum.
    Penny GR; Wilson CJ; Kitai ST
    J Comp Neurol; 1988 Mar; 269(2):275-89. PubMed ID: 2833538
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterogeneous development of calbindin-D28K expression in the striatal matrix.
    Liu FC; Graybiel AM
    J Comp Neurol; 1992 Jun; 320(3):304-22. PubMed ID: 1351896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dendritic domains of medium spiny neurons in the primate striatum: relationships to striosomal borders.
    Walker RH; Arbuthnott GW; Baughman RW; Graybiel AM
    J Comp Neurol; 1993 Nov; 337(4):614-28. PubMed ID: 8288774
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The intercalated cells of the amygdala.
    Millhouse OE
    J Comp Neurol; 1986 May; 247(2):246-71. PubMed ID: 2424941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Juxtacellular labeling of tonically active neurons and phasically active neurons in the rat striatum.
    Inokawa H; Yamada H; Matsumoto N; Muranishi M; Kimura M
    Neuroscience; 2010 Jun; 168(2):395-404. PubMed ID: 20371269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calcium-binding proteins as markers of layer-I projecting vs. deep layer-projecting thalamocortical neurons: a double-labeling analysis in the rat.
    Rubio-Garrido P; Pérez-de-Manzo F; Clascá F
    Neuroscience; 2007 Oct; 149(1):242-50. PubMed ID: 17850982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Morphology of striatal neurons containing VIP-like immunoreactivity.
    Theriault E; Landis DM
    J Comp Neurol; 1987 Feb; 256(1):1-13. PubMed ID: 2434535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphological assessment of grafted rat and mouse cortical neurons: a light and electron microscopic study.
    Lübke J; Wood MJ; Clarke DJ
    J Comp Neurol; 1994 Mar; 341(1):78-94. PubMed ID: 8006225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic organization of the striatum.
    Gerfen CR
    J Electron Microsc Tech; 1988 Nov; 10(3):265-81. PubMed ID: 3069970
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The calcium binding proteins calbindin, parvalbumin, and calretinin have specific patterns of expression in the gray matter of cat spinal cord.
    Anelli R; Heckman CJ
    J Neurocytol; 2005 Dec; 34(6):369-85. PubMed ID: 16902759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large aspiny cells in the matrix of the rat neostriatum in vitro: physiological identification, relation to the compartments and excitatory postsynaptic currents.
    Kawaguchi Y
    J Neurophysiol; 1992 Jun; 67(6):1669-82. PubMed ID: 1352806
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.