These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 8198404)
1. Contribution to the study of the alteration of lipase activity of Candida rugosa by ions and buffers. Hernáiz MJ; Rua M; Celda B; Medina P; Sinisterra JV; Sánchez-Montero JM Appl Biochem Biotechnol; 1994 Mar; 44(3):213-29. PubMed ID: 8198404 [TBL] [Abstract][Full Text] [Related]
2. Effect of metal ions on the hydrolytic and transesterification activities of Candida rugosa lipase. Katiyar M; Ali A J Oleo Sci; 2013; 62(11):919-24. PubMed ID: 24200940 [TBL] [Abstract][Full Text] [Related]
3. Immobilization of lipase on carboxylic acid-modified silica nanoparticles for olive oil glycerolysis. Singh AK; Mukhopadhyay M Bioprocess Biosyst Eng; 2018 Jan; 41(1):115-127. PubMed ID: 29043450 [TBL] [Abstract][Full Text] [Related]
4. Reactivity of pure Candida rugosa lipase isoenzymes (Lip1, Lip2, and Lip3) in aqueous and organic media. influence of the isoenzymatic profile on the lipase performance in organic media. López N; Pernas MA; Pastrana LM; Sánchez A; Valero F; Rúa ML Biotechnol Prog; 2004; 20(1):65-73. PubMed ID: 14763825 [TBL] [Abstract][Full Text] [Related]
5. Effect of metal ions on the enzymatic hydrolysis of hemp seed oil by lipase Candida sp. 99-125. Lu J; Wang P; Ke Z; Liu X; Kang Q; Hao L Int J Biol Macromol; 2018 Jul; 114():922-928. PubMed ID: 29604356 [TBL] [Abstract][Full Text] [Related]
6. Effect of a buffer mixture system on the activity of lipases during immobilization process. Lee JH; Kim SB; Park C; Kim SW Bioresour Technol; 2010 Jan; 101 Suppl 1():S66-70. PubMed ID: 19361984 [TBL] [Abstract][Full Text] [Related]
7. Surfactant enhanced ricinoleic acid production using Candida rugosa lipase. Goswami D; Sen R; Basu JK; De S Bioresour Technol; 2010 Jan; 101(1):6-13. PubMed ID: 19717301 [TBL] [Abstract][Full Text] [Related]
8. Enzymatic resolution to (-)-ormeloxifene intermediates from their racemates using immobilized Candida rugosa lipase. Lehmann SV; Breinholt J; Bury PS; Nielsen TE Chirality; 2000 Jul; 12(7):568-73. PubMed ID: 10861957 [TBL] [Abstract][Full Text] [Related]
9. Rational strategy for the production of new crude lipases from Candida rugosa. de María PD; Sánchez-Montero JM; Alcántara AR; Valero F; Sinisterra JV Biotechnol Lett; 2005 Apr; 27(7):499-503. PubMed ID: 15928857 [TBL] [Abstract][Full Text] [Related]
10. Tuning lipase enantioselectivity in organic media using solid-state buffers. Quirós M; Parker MC; Turner NJ J Org Chem; 2001 Jul; 66(15):5074-9. PubMed ID: 11463259 [TBL] [Abstract][Full Text] [Related]
11. Adsorption of lipase on polypropylene powder. Gitlesen T; Bauer M; Adlercreutz P Biochim Biophys Acta; 1997 Apr; 1345(2):188-96. PubMed ID: 9106498 [TBL] [Abstract][Full Text] [Related]
12. Optimization of the production and characterization of lipase from Candida rugosa and Geotrichum candidum in soybean molasses by submerged fermentation. de Morais WG; Kamimura ES; Ribeiro EJ; Pessela BC; Cardoso VL; de Resende MM Protein Expr Purif; 2016 Jul; 123():26-34. PubMed ID: 27057641 [TBL] [Abstract][Full Text] [Related]
13. A study on the catalytic performance of lipase in reverse micelles. Xu J; Mao Q; Ying X; Hu Y Chin J Biotechnol; 1991; 7(4):301-7. PubMed ID: 1824243 [TBL] [Abstract][Full Text] [Related]
14. Effects of alcohol and buffer treatments on the activity and enantioselectivity of Candida rugosa lipase. Takaç S; Unlü AE Prep Biochem Biotechnol; 2009; 39(2):124-41. PubMed ID: 19291575 [TBL] [Abstract][Full Text] [Related]
15. Characterization, optimization and stability studies on Candida rugosa lipase supported on nanocellulose reinforced chitosan prepared from oil palm biomass. Elias N; Chandren S; Razak FIA; Jamalis J; Widodo N; Wahab RA Int J Biol Macromol; 2018 Jul; 114():306-316. PubMed ID: 29578010 [TBL] [Abstract][Full Text] [Related]
16. Study of microwave effects on the lipase-catalyzed hydrolysis. Chen CC; Reddy PM; Devi CS; Chang PC; Ho YP Enzyme Microb Technol; 2016 Jan; 82():164-172. PubMed ID: 26672464 [TBL] [Abstract][Full Text] [Related]
17. Structure and conformational flexibility of Candida rugosa lipase. Cygler M; Schrag JD Biochim Biophys Acta; 1999 Nov; 1441(2-3):205-14. PubMed ID: 10570248 [TBL] [Abstract][Full Text] [Related]
18. C-terminal region of Candida rugosa lipases affects enzyme activity and interfacial activation. Hung KS; Chen SY; Liu HF; Tsai BR; Chen HW; Huang CY; Liao JL; Sun KH; Tang SJ J Agric Food Chem; 2011 May; 59(10):5396-401. PubMed ID: 21504227 [TBL] [Abstract][Full Text] [Related]
19. Influence of the hydrophobicity of lipase isoenzymes from Candida rugosa on its hydrolytic activity in reverse micelles. Otero C; Rúa ML; Robledo L FEBS Lett; 1995 Feb; 360(2):202-6. PubMed ID: 7875331 [TBL] [Abstract][Full Text] [Related]
20. Immobilization of Candida rugosa lipase on glass beads for enantioselective hydrolysis of racemic naproxen methyl ester. Yilmaz E; Can K; Sezgin M; Yilmaz M Bioresour Technol; 2011 Jan; 102(2):499-506. PubMed ID: 20846857 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]