These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 8198404)

  • 21. Isoamylacetate production by entrapped and covalently bound Candida rugosa and porcine pancreatic lipases.
    Ozyilmaz G; Yağız E
    Food Chem; 2012 Dec; 135(4):2326-32. PubMed ID: 22980809
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancement of activity and selectivity of Candida rugosa lipase and Candida antarctica lipase A by bioimprinting and/or immobilization for application in the selective ethanolysis of fish oil.
    Kahveci D; Xu X
    Biotechnol Lett; 2011 Oct; 33(10):2065-71. PubMed ID: 21695486
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fine separation and characterization of Candida rugosa lipase isoenzymes.
    Xin JY; Xiao-Xue Hu YX; Cui JR; Li SB; Xia CG; Zhu LM
    J Basic Microbiol; 2002; 42(5):355-63. PubMed ID: 12362407
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Improvement of catalytic activity of lipase in the presence of calix[4]arene valeric acid or hydrazine derivative.
    Akoz E; Sayin S; Kaplan S; Yilmaz M
    Bioprocess Biosyst Eng; 2015 Mar; 38(3):595-604. PubMed ID: 25326059
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deciphering the toxicity of bisphenol a to Candida rugosa lipase through spectrophotometric methods.
    Zhang R; Zhao L; Liu R
    J Photochem Photobiol B; 2016 Oct; 163():40-6. PubMed ID: 27529468
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of native and recombinant lipases by Candida rugosa: a review.
    Ferrer P; Montesinos JL; Valero F; Solà C
    Appl Biochem Biotechnol; 2001 Sep; 95(3):221-55. PubMed ID: 11732718
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Purification and Characterization of a Novel Cold-Active Lipase from the Yeast Candida zeylanoides.
    Čanak I; Berkics A; Bajcsi N; Kovacs M; Belak A; Teparić R; Maraz A; Mrša V
    J Mol Microbiol Biotechnol; 2015; 25(6):403-11. PubMed ID: 26820306
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hofmeister effects in enzymatic activity: weak and strong electrolyte influences on the activity of Candida rugosa lipase.
    Salis A; Bilanicova D; Ninham BW; Monduzzi M
    J Phys Chem B; 2007 Feb; 111(5):1149-56. PubMed ID: 17266269
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical modification with functionalized ionic liquids: a novel method to improve the enzymatic properties of Candida rugosa lipase.
    Hu Y; Yang J; Jia R; Ding Y; Li S; Huang H
    Bioprocess Biosyst Eng; 2014 Aug; 37(8):1617-26. PubMed ID: 24488260
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Screening of lipase carriers for reactions in water, biphasic and pure organic solvent systems.
    Hrydziuszko Z; Dmytryk A; Majewska P; Szymańska K; Liesiene J; Jarzębski A; Bryjak J
    Acta Biochim Pol; 2014; 61(1):1-6. PubMed ID: 24644546
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immobilization of Candida rugosa lipase on a pH-sensitive support for enantioselective hydrolysis of ketoprofen ester.
    Zhu S; Wu Y; Yu Z
    J Biotechnol; 2005 Apr; 116(4):397-401. PubMed ID: 15748766
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Probing the substrate specificity for lipases. II. Kinetic and modeling studies on the molecular recognition of 2-arylpropionic esters by Candida rugosa and Rhizomucor miehei lipases.
    Botta M; Cernia E; Corelli F; Manetti F; Soro S
    Biochim Biophys Acta; 1997 Feb; 1337(2):302-10. PubMed ID: 9048908
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparative kinetic study of lipases A and B from Candida rugosa in the hydrolysis of lipid p-nitrophenyl esters in mixed micelles with Triton X-100.
    Redondo O; Herrero A; Bello JF; Roig MG; Calvo MV; Plou FJ; Burguillo FJ
    Biochim Biophys Acta; 1995 Jan; 1243(1):15-24. PubMed ID: 7827103
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protein engineering and applications of Candida rugosa lipase isoforms.
    Akoh CC; Lee GC; Shaw JF
    Lipids; 2004 Jun; 39(6):513-26. PubMed ID: 15554150
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design of biocompatible immobilized Candida rugosa lipase with potential application in food industry.
    Trbojević Ivić J; Veličković D; Dimitrijević A; Bezbradica D; Dragačević V; Gavrović Jankulović M; Milosavić N
    J Sci Food Agric; 2016 Sep; 96(12):4281-7. PubMed ID: 26801832
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Probing the substrate specificity for lipases. A CoMFA approach for predicting the hydrolysis rates of 2-arylpropionic esters catalyzed by Candida rugosa lipase.
    Botta M; Cernia E; Corelli F; Manetti F; Soro S
    Biochim Biophys Acta; 1996 Aug; 1296(1):121-6. PubMed ID: 8765237
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Competition between lipases and monoglycerides at interfaces.
    Reis P; Holmberg K; Miller R; Krägel J; Grigoriev DO; Leser ME; Watzke HJ
    Langmuir; 2008 Jul; 24(14):7400-7. PubMed ID: 18547084
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation of core-shell magnetic polydopamine/alginate biocomposite for Candida rugosa lipase immobilization.
    Hou C; Qi Z; Zhu H
    Colloids Surf B Biointerfaces; 2015 Apr; 128():544-551. PubMed ID: 25784302
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immobilization of Candida antarctica lipase B by adsorption in organic medium.
    Sun J; Jiang Y; Zhou L; Gao J
    N Biotechnol; 2010 Feb; 27(1):53-8. PubMed ID: 20004754
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Media formulation using complex organic nutrients for improved activity, productivity, and yield of Candida rugosa lipase and esterase enzymes.
    Takac S; Erdem B
    Prep Biochem Biotechnol; 2009; 39(3):323-41. PubMed ID: 19431047
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.