These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 8198404)

  • 41. Analogs of reaction intermediates identify a unique substrate binding site in Candida rugosa lipase.
    Grochulski P; Bouthillier F; Kazlauskas RJ; Serreqi AN; Schrag JD; Ziomek E; Cygler M
    Biochemistry; 1994 Mar; 33(12):3494-500. PubMed ID: 8142346
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Kinetic resolution of profens by enantioselective esterification catalyzed by Candida antarctica and Candida rugosa lipases.
    Sikora A; Siódmiak T; Marszałł MP
    Chirality; 2014 Oct; 26(10):663-9. PubMed ID: 25080075
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhancement of the activity and enantioselectivity of lipase by sol-gel encapsulation immobilization onto β-cyclodextrin-based polymer.
    Yilmaz E; Sezgin M
    Appl Biochem Biotechnol; 2012 Apr; 166(8):1927-40. PubMed ID: 22383051
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Covalent immobilization of Candida rugosa lipase on aldehyde functionalized hydrophobic support and the application for synthesis of oleic acid ester.
    Temoçin Z
    J Biomater Sci Polym Ed; 2013; 24(14):1618-35. PubMed ID: 23574345
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Candida rugosa lipase encapsulated with magnetic sporopollenin: design and enantioselective hydrolysis of racemic arylpropanoic acid esters.
    Ozyilmaz E; Etci K; Sezgin M
    Prep Biochem Biotechnol; 2018; 48(10):887-897. PubMed ID: 30296382
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chemoenzymatic synthesis of both enantiomers of 3-hydroxy-2,2-dimethylcyclohexanone.
    Chênevert R; Lévesque C; Morin P
    J Org Chem; 2008 Dec; 73(23):9501-3. PubMed ID: 18991382
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Conversion of crude Jatropha curcas seed oil into biodiesel using liquid recombinant Candida rugosa lipase isozymes.
    Kuo TC; Shaw JF; Lee GC
    Bioresour Technol; 2015 Sep; 192():54-9. PubMed ID: 26011691
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Immobilization of lipases on polyethylene and application to perilla oil hydrolysis for production of alpha-linolenic acid.
    Watanabe T; Suzuki Y; Sagesaka Y; Kohashi M
    J Nutr Sci Vitaminol (Tokyo); 1995 Jun; 41(3):307-12. PubMed ID: 7472675
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evaluation of structure and hydrolysis activity of Candida rugosa Lip7 in presence of sub-/super-critical CO₂.
    Liu Y; Chen D; Xu L; Yan Y
    Enzyme Microb Technol; 2012 Dec; 51(6-7):354-8. PubMed ID: 23040391
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Improving catalytic hydrolysis reaction efficiency of sol-gel-encapsulated Candida rugosa lipase with magnetic β-cyclodextrin nanoparticles.
    Ozyilmaz E; Sayin S; Arslan M; Yilmaz M
    Colloids Surf B Biointerfaces; 2014 Jan; 113():182-9. PubMed ID: 24090713
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Activity and enantioselectivity of wildtype and lid mutated Candida rugosa lipase isoform 1 in organic solvents.
    Secundo F; Carrea G; Tarabiono C; Brocca S; Lotti M
    Biotechnol Bioeng; 2004 Apr; 86(2):236-40. PubMed ID: 15052644
    [TBL] [Abstract][Full Text] [Related]  

  • 52. General trend of lipase to self-assemble giving bimolecular aggregates greatly modifies the enzyme functionality.
    Palomo JM; Fuentes M; Fernández-Lorente G; Mateo C; Guisan JM; Fernández-Lafuente R
    Biomacromolecules; 2003; 4(1):1-6. PubMed ID: 12523838
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhancement of n-3 polyunsaturated fatty acid glycerides in Sardine oil by a bioimprinted cross-linked Candida rugosa lipase.
    Sampath C; Belur PD; Iyyasami R
    Enzyme Microb Technol; 2018 Mar; 110():20-29. PubMed ID: 29310852
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhanced catalysis and enantioselective resolution of racemic naproxen methyl ester by lipase encapsulated within iron oxide nanoparticles coated with calix[8]arene valeric acid complexes.
    Sayin S; Akoz E; Yilmaz M
    Org Biomol Chem; 2014 Sep; 12(34):6634-42. PubMed ID: 25012138
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Assessment of activities and conformation of lipases treated with sub- and supercritical carbon dioxide.
    Chen D; Peng C; Zhang H; Yan Y
    Appl Biochem Biotechnol; 2013 Apr; 169(7):2189-201. PubMed ID: 23417391
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Biochemical properties of free and immobilized Candida rugosa lipase onto Al2O3: a comparative study.
    Yeşiloğlu Y; Şit L
    Artif Cells Blood Substit Immobil Biotechnol; 2011 Aug; 39(4):247-51. PubMed ID: 21117873
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lipase production by yeasts from extra virgin olive oil.
    Ciafardini G; Zullo BA; Iride A
    Food Microbiol; 2006 Feb; 23(1):60-7. PubMed ID: 16942987
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Modulation of lipase hydrolysis and synthesis reactions using carbohydrates.
    Sanchez-Montero JM; Hamon V; Thomas D; Legoy MD
    Biochim Biophys Acta; 1991 Jul; 1078(3):345-50. PubMed ID: 1859825
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synthesis of ascorbyl oleate by transesterification of olive oil with ascorbic acid in polar organic media catalyzed by immobilized lipases.
    Moreno-Perez S; Filice M; Guisan JM; Fernandez-Lorente G
    Chem Phys Lipids; 2013 Sep; 174():48-54. PubMed ID: 23891831
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Protein-Coated Microcrystals from Candida rugosa Lipase: Its Immobilization, Characterization, and Application in Resolution of Racemic Ibuprofen.
    Huang S; Li X; Xu L; Ke C; Zhang R; Yan Y
    Appl Biochem Biotechnol; 2015 Sep; 177(1):36-47. PubMed ID: 26137875
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.