These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 8198520)

  • 1. Circular dichroism of stem bromelain: a third spectral class within the family of cysteine proteinases.
    Arroyo-Reyna A; Hernandez-Arana A; Arreguin-Espinosa R
    Biochem J; 1994 May; 300 ( Pt 1)(Pt 1):107-10. PubMed ID: 8198520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circular dichroism of cysteine proteinases from papaya latex. Evidence of differences in the folding of their polypeptide chains.
    Solís-Mendiola S; Arroyo-Reyna A; Hernández-Arana A
    Biochim Biophys Acta; 1992 Feb; 1118(3):288-92. PubMed ID: 1737051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of two forms of an acidic bromelain stem proteinase.
    Harrach T; Eckert K; Maurer HR; Machleidt I; Machleidt W; Nuck R
    J Protein Chem; 1998 May; 17(4):351-61. PubMed ID: 9619588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Circular dichroism studies of acid proteinases from Aspergillus niger and Aspergillus awamori.
    Tello-Solís SR; Rodríguez-Romero A; Hernández-Arana A
    Biochem Mol Biol Int; 1994 Jul; 33(4):759-68. PubMed ID: 7981663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purification and biochemical characterization of phytocystatin from Brassica alba.
    Ahmed A; Shamsi A; Bano B
    J Mol Recognit; 2016 May; 29(5):223-31. PubMed ID: 26748819
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cysteine proteinases of the pineapple plant.
    Rowan AD; Buttle DJ; Barrett AJ
    Biochem J; 1990 Mar; 266(3):869-75. PubMed ID: 2327970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural similarity of chymopapain forms as indicated by circular dichroism.
    Solis-Mendiola S; Zubillaga-Luna R; Rojo-Dominguez A; Hernandez-Arana A
    Biochem J; 1989 Jan; 257(1):183-6. PubMed ID: 2920009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The proteolytic system of pineapple stems revisited: Purification and characterization of multiple catalytically active forms.
    Matagne A; Bolle L; El Mahyaoui R; Baeyens-Volant D; Azarkan M
    Phytochemistry; 2017 Jun; 138():29-51. PubMed ID: 28238440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Periodate oxidation of carbohydrate moiety of stem bromelain without much alteration in enzymatic activity.
    Yasuda Y; Takahashi N; Murachi T
    Biochemistry; 1971 Jun; 10(13):2624-30. PubMed ID: 4326773
    [No Abstract]   [Full Text] [Related]  

  • 10. The structure and mechanism of stem bromelain. Evaluation of the homogeneity of purified stem bromelain, determination of the molecular weight and kinetic analysis of the bromelain-catalysed hydrolysis of N-benzyloxycarbonyl-L-phenylalanyl-L-serine methyl ester.
    Wharton CW
    Biochem J; 1974 Dec; 143(3):575-86. PubMed ID: 4462742
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete amino acid sequence of ananain and a comparison with stem bromelain and other plant cysteine proteases.
    Lee KL; Albee KL; Bernasconi RJ; Edmunds T
    Biochem J; 1997 Oct; 327 ( Pt 1)(Pt 1):199-202. PubMed ID: 9355753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low versus high molecular weight poly(ethylene glycol)-induced states of stem bromelain at low pH: stabilization of molten globule and unfolded states.
    Ahmad B; Ansari MA; Sen P; Khan RH
    Biopolymers; 2006 Apr; 81(5):350-9. PubMed ID: 16345002
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bromelain: from production to commercialisation.
    Ramli AN; Aznan TN; Illias RM
    J Sci Food Agric; 2017 Mar; 97(5):1386-1395. PubMed ID: 27790704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The catalytic mode of cysteine proteinases of papain (C1) family.
    Theodorou LG; Bieth JG; Papamichael EM
    Bioresour Technol; 2007 Jul; 98(10):1931-9. PubMed ID: 16997546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The thermal denaturation of stem bromelain is consistent with an irreversible two-state model.
    Arroyo-Reyna A; Hernández-Arana A
    Biochim Biophys Acta; 1995 Apr; 1248(2):123-8. PubMed ID: 7748893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Amyloidogenic behavior of different intermediate state of stem bromelain: A biophysical insight.
    Zaman M; Ehtram A; Chaturvedi SK; Nusrat S; Khan RH
    Int J Biol Macromol; 2016 Oct; 91():477-85. PubMed ID: 27259642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular features determining different partitioning patterns of papain and bromelain in aqueous two-phase systems.
    Rocha MV; Nerli BB
    Int J Biol Macromol; 2013 Oct; 61():204-11. PubMed ID: 23831382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [A comparative study of aspartyl and cysteine proteinases and their inhibitors in human B- and T-cell leukemias].
    Gureeva TA; Golubeva NV; Lubkova ON; Lokshina LA
    Vopr Med Khim; 1994; 40(3):6-8. PubMed ID: 8079445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrophobic interactions are the prevalent force in bromelain:Fab' complex.
    Gupta P; Saleemuddin M; Khan RH
    Biochemistry (Mosc); 2006; 71 Suppl 1():S31-7. PubMed ID: 16487065
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fractionation and activity profiling of fruit bromelain from pineapples of Phuket variety growing in Thailand.
    Han Z; Kraiyot S; Kittikun AH; Zhou W; Li J
    J Food Biochem; 2019 Nov; 43(11):e13011. PubMed ID: 31393018
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.