These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 819897)

  • 41. Methionine synthase and methionine adenosyltransferase activities in rat brain after ethanol treatment.
    Sherif F; Gomes C; Oreland L
    Pharmacol Toxicol; 1993 Nov; 73(5):287-90. PubMed ID: 8115313
    [No Abstract]   [Full Text] [Related]  

  • 42. Decreased methionine adenosyltransferase activity in erythrocytes of patients with dementia disorders.
    Gomes Trolin C; Regland B; Oreland L
    Eur Neuropsychopharmacol; 1995 Jun; 5(2):107-14. PubMed ID: 7549452
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hypermethioninemia associated with methionine adenosyltransferase deficiency: clinical, morphologic, and biochemical observations on four patients.
    Gaull GE; Tallan HH; Lonsdale D; Przyrembel H; Schaffner F; von Bassewitz DB
    J Pediatr; 1981 May; 98(5):734-41. PubMed ID: 7229751
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The enzymes of lecithin bio-synthesis in human newborn lungs. II. Methionine-activating enzyme and phosphatidyl methyltransferase.
    Zachman RD
    Biol Neonate; 1972; 20(5):448-57. PubMed ID: 4644772
    [No Abstract]   [Full Text] [Related]  

  • 45. Possible role of the control of arginase and methionine adenosyl transferase in the transport processes of endogenous formaldehyde and in hypermethylation.
    Csiba A; Trézl L; Vári E; Téglás G
    Med Hypotheses; 1982 Apr; 8(4):409-12. PubMed ID: 7099062
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Activities of some enzymes involved in homocysteine methylation in brain, liver and kidney of the developing rhesus monkey.
    Sturman JA; Gaull GE; Niemann WH
    J Neurochem; 1976 Aug; 27(2):425-31. PubMed ID: 823296
    [No Abstract]   [Full Text] [Related]  

  • 47. Biochemical studies of N-methyltransferase in human and guinea-pig lung: no apparent role in the pathogenesis of asthma.
    Henderson GD; Ruffin RE; Alpers JH; Crockett AJ; Schembri DA; Latimer KM
    Clin Sci (Lond); 1988 Jul; 75(1):5-11. PubMed ID: 3409624
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Studies on lung N-methyltransferases, a pharmacological approach.
    Pendleton RG; Gessner G; Sawyer J
    Naunyn Schmiedebergs Arch Pharmacol; 1980 Sep; 313(3):263-8. PubMed ID: 7432557
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The synthesis of methionine by enzymic transmethylation. VII. Existence of two separate homocysteine methylpherases on mammalian liver.
    KLEE WA; RICHARDS HH; CANTONI GL
    Biochim Biophys Acta; 1961 Nov; 54():157-64. PubMed ID: 14456704
    [No Abstract]   [Full Text] [Related]  

  • 50. The synthesis of methionine by enzymic transmethylation. III. Mechanism of the reversible polymerization of thetin-homocysteine methylpherase and its relation to the mechanism of methionine synthesis.
    DURELL J; CANTONI GL
    Biochim Biophys Acta; 1959 Oct; 35():515-29. PubMed ID: 13818824
    [No Abstract]   [Full Text] [Related]  

  • 51. [Coupling of epigenome and gene regulation on chromatin by methionine adenosyltransferase II].
    Katoh Y; Kera Y
    Seikagaku; 2014 Oct; 86(5):683-6. PubMed ID: 25509338
    [No Abstract]   [Full Text] [Related]  

  • 52. DNA synthesis from the beta-carbon of serine by fetal and mature human liver.
    Sturman JA; Gaull GE; Räihä NC
    Biol Neonate; 1975; 27(1-2):17-22. PubMed ID: 1170901
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Radiosensitivity of ATP: L-methionine S-adenosyltransferase.
    Hancock RL; Giblak RE
    Experientia; 1972 Apr; 28(4):409. PubMed ID: 5036552
    [No Abstract]   [Full Text] [Related]  

  • 54. Cell transformation by exogenous methylated purines.
    Trewyn RW; Lehman JM; Kerr SJ
    Adv Enzyme Regul; 1977 Oct 3-4; 16():335-45. PubMed ID: 616771
    [No Abstract]   [Full Text] [Related]  

  • 55. The synthesis of methionine by enzymic transmethylation. IV. Light scattering studies of the depolymerization of thetin-homocysteine methylpherase.
    DURELL J; STEINER RF
    Biochim Biophys Acta; 1960 Apr; 39():248-54. PubMed ID: 13818825
    [No Abstract]   [Full Text] [Related]  

  • 56. The synthesis of methionine by enzymic transmethylation. VI. Studies of the homogeneity, shape properties and monomer functionality of thetin-homocysteine methylpherase.
    KLEE WA; CANTONI GL
    Biochim Biophys Acta; 1960 Dec; 45():545-53. PubMed ID: 13756609
    [No Abstract]   [Full Text] [Related]  

  • 57. Characteristic MR imaging changes in severe hypermethioninemic states.
    Braverman NE; Mudd SH; Barker PB; Pomper MG
    AJNR Am J Neuroradiol; 2005; 26(10):2705-6. PubMed ID: 16286426
    [No Abstract]   [Full Text] [Related]  

  • 58. Solo act revealed to be duet.
    Atta M
    Nat Chem Biol; 2019 Dec; 15(12):1132-1133. PubMed ID: 31740831
    [No Abstract]   [Full Text] [Related]  

  • 59. The synthesis of methionine by enzymic transmethylation. V. Chromatographic analysis of thetinhomocysteine methylpherase on modified cellulose columns.
    KLEE WA
    Biochim Biophys Acta; 1960 Dec; 45():537-44. PubMed ID: 13756610
    [No Abstract]   [Full Text] [Related]  

  • 60. Corrigendum to "Clinical and metabolic findings in patients with methionine adenosyltransferase I/III deficiency detected by newborn screening" [Mol. Genet. Metab. 110 (2013) 218-221].
    Couce ML; Dolores Bóveda M; García-Jimémez C; Balmaseda E; Vives I; Castiñeiras DE; Fernández-Marmiesse A; Fraga JM; Mudd SH; Corrales FJ
    Mol Genet Metab; 2015 Mar; 114(3):486. PubMed ID: 25877476
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.