BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 8199245)

  • 1. Discrimination between transfer-RNAs by tyrosyl-tRNA synthetase.
    Bedouelle H; Guez-Ivanier V; Nageotte R
    Biochimie; 1993; 75(12):1099-108. PubMed ID: 8199245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognition of tRNA(Tyr) by tyrosyl-tRNA synthetase.
    Bedouelle H
    Biochimie; 1990 Aug; 72(8):589-98. PubMed ID: 2126463
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of residue Glu152 in the discrimination between transfer RNAs by tyrosyl-tRNA synthetase from Bacillus stearothermophilus.
    Vidal-Cros A; Bedouelle H
    J Mol Biol; 1992 Feb; 223(3):801-10. PubMed ID: 1542120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reaction of modified and unmodified tRNA(Tyr) substrates with tyrosyl-tRNA synthetase (Bacillus stearothermophilus).
    Avis JM; Day AG; Garcia GA; Fersht AR
    Biochemistry; 1993 May; 32(20):5312-20. PubMed ID: 8499435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies on crenarchaeal tyrosylation accuracy with mutational analyses of tyrosyl-tRNA synthetase and tyrosine tRNA from Aeropyrum pernix.
    Iwaki J; Endo K; Ichikawa T; Suzuki R; Fujimoto Z; Momma M; Kuno A; Nishimura S; Hasegawa T
    J Biochem; 2012 Dec; 152(6):539-48. PubMed ID: 23024156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural basis for recognition of cognate tRNA by tyrosyl-tRNA synthetase from three kingdoms.
    Tsunoda M; Kusakabe Y; Tanaka N; Ohno S; Nakamura M; Senda T; Moriguchi T; Asai N; Sekine M; Yokogawa T; Nishikawa K; Nakamura KT
    Nucleic Acids Res; 2007; 35(13):4289-300. PubMed ID: 17576676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Saccharomyces cerevisiae cytoplasmic tyrosyl-tRNA synthetase gene. Isolation by complementation of a mutant Escherichia coli suppressor tRNA defective in aminoacylation and sequence analysis.
    Chow CM; RajBhandary UL
    J Biol Chem; 1993 Jun; 268(17):12855-63. PubMed ID: 8509419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macromolecular recognition through electrostatic repulsion.
    Bedouelle H; Nageotte R
    EMBO J; 1995 Jun; 14(12):2945-50. PubMed ID: 7796819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperactive Editing Domain Variants Switch the Stereospecificity of Tyrosyl-tRNA Synthetase.
    Richardson CJ; First EA
    Biochemistry; 2016 May; 55(17):2526-37. PubMed ID: 27064538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis for orthogonal tRNA specificities of tyrosyl-tRNA synthetases for genetic code expansion.
    Kobayashi T; Nureki O; Ishitani R; Yaremchuk A; Tukalo M; Cusack S; Sakamoto K; Yokoyama S
    Nat Struct Biol; 2003 Jun; 10(6):425-32. PubMed ID: 12754495
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic analysis reveals a temperature-dependent change in the catalytic mechanism of bacillus stearothermophilus tyrosyl-tRNA synthetase.
    Sharma G; First EA
    J Biol Chem; 2009 Feb; 284(7):4179-90. PubMed ID: 19098308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Disordered C-terminal domain of tyrosyl transfer-RNA synthetase: evidence for a folded state.
    Guez-Ivanier V; Bedouelle H
    J Mol Biol; 1996 Jan; 255(1):110-20. PubMed ID: 8568859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identity of tRNA for yeast tyrosyl-tRNA synthetase: tyrosylation is more sensitive to identity nucleotides than to structural features.
    Fechter P; Rudinger-Thirion J; Théobald-Dietrich A; Giegé R
    Biochemistry; 2000 Feb; 39(7):1725-33. PubMed ID: 10677221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of Nanoarchaeum equitans tyrosyl-tRNA synthetase and its aminoacylation activity toward tRNA
    Horikoshi T; Noguchi H; Umehara T; Mutsuro-Aoki H; Kurihara R; Noguchi R; Hashimoto T; Watanabe Y; Ando T; Kamata K; Park SY; Tamura K
    Biochem Biophys Res Commun; 2021 Oct; 575():90-95. PubMed ID: 34461441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of the tRNA(Tyr)/TyrRS aminoacylation systems.
    Bonnefond L; Giegé R; Rudinger-Thirion J
    Biochimie; 2005; 87(9-10):873-83. PubMed ID: 16164994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional replacement of the endogenous tyrosyl-tRNA synthetase-tRNATyr pair by the archaeal tyrosine pair in Escherichia coli for genetic code expansion.
    Iraha F; Oki K; Kobayashi T; Ohno S; Yokogawa T; Nishikawa K; Yokoyama S; Sakamoto K
    Nucleic Acids Res; 2010 Jun; 38(11):3682-91. PubMed ID: 20159998
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of disordered regions in transferring tyrosine to its cognate tRNA.
    Srivastava A; Yesudhas D; Ramakrishnan C; Ahmad S; Gromiha MM
    Int J Biol Macromol; 2020 May; 150():705-713. PubMed ID: 32057853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stabilization of the transition state for the transfer of tyrosine to tRNA(Tyr) by tyrosyl-tRNA synthetase.
    Xin Y; Li W; First EA
    J Mol Biol; 2000 Oct; 303(2):299-310. PubMed ID: 11023794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlating amino acid conservation with function in tyrosyl-tRNA synthetase.
    Xin Y; Li W; Dwyer DS; First EA
    J Mol Biol; 2000 Oct; 303(2):287-98. PubMed ID: 11023793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Activation of D-tyrosine by Bacillus stearothermophilus tyrosyl-tRNA synthetase: 1. Pre-steady-state kinetic analysis reveals the mechanistic basis for the recognition of D-tyrosine.
    Sheoran A; Sharma G; First EA
    J Biol Chem; 2008 May; 283(19):12960-70. PubMed ID: 18319247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.