These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 8199307)

  • 21. The photodecomposition of tryptophan peptides.
    Holt LA; Milligan B; Rivett DE; Stewart FH
    Biochim Biophys Acta; 1977 Aug; 499(1):131-8. PubMed ID: 889893
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methionine, tryptophan, and histidine oxidation in a model protein, PTH: mechanisms and stabilization.
    Ji JA; Zhang B; Cheng W; Wang YJ
    J Pharm Sci; 2009 Dec; 98(12):4485-500. PubMed ID: 19455640
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Riboflavin-induced Type 1 photo-oxidation of tryptophan using a high intensity 365 nm light emitting diode.
    Silva E; Barrias P; Fuentes-Lemus E; Tirapegui C; Aspee A; Carroll L; Davies MJ; López-Alarcón C
    Free Radic Biol Med; 2019 Feb; 131():133-143. PubMed ID: 30502456
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The reaction of oxygen with radicals from oxidation of tryptophan and indole-3-acetic acid.
    Candeias LP; Wardman P; Mason RP
    Biophys Chem; 1997 Sep; 67(1-3):229-37. PubMed ID: 9397527
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of polyaminocarboxylate metal chelators on iron-thiolate induced oxidation of methionine- and histidine-containing peptides.
    Zhao F; Yang J; Schöneich C
    Pharm Res; 1996 Jun; 13(6):931-8. PubMed ID: 8792435
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxidation of an indole substrate by porphyrin iron(iii) superoxide: relevance to indoleamine and tryptophan 2,3-dioxygenases.
    Sacramento JJD; Goldberg DP
    Chem Commun (Camb); 2020 Mar; 56(20):3089-3092. PubMed ID: 32052805
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydroxyl radical mediated demethylenation of (methylenedioxy)phenyl compounds.
    Kumagai Y; Lin LY; Schmitz DA; Cho AK
    Chem Res Toxicol; 1991; 4(3):330-4. PubMed ID: 1680477
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxygen-dependent antagonism of lipid peroxidation.
    Thom SR; Elbuken ME
    Free Radic Biol Med; 1991; 10(6):413-26. PubMed ID: 1654290
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetics and mechanism of oxidation of tryptophan by ferrate(VI).
    Casbeer EM; Sharma VK; Zajickova Z; Dionysiou DD
    Environ Sci Technol; 2013 May; 47(9):4572-80. PubMed ID: 23517271
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Formation of N-formylkynurenine suggests the involvement of apolipoprotein B-100 centered tryptophan radicals in the initiation of LDL lipid peroxidation.
    Giessauf A; van Wickern B; Simat T; Steinhart H; Esterbauer H
    FEBS Lett; 1996 Jul; 389(2):136-40. PubMed ID: 8766816
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acid-induced change in ozone-reactive site in indole ring of tryptophan.
    Matsumura S; Yoshimura A; Okazaki K; Fijitani N; Hattori H
    Biochem Biophys Res Commun; 2009 Mar; 380(3):498-502. PubMed ID: 19250632
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Arsenic(III) and iron(II) co-oxidation by oxygen and hydrogen peroxide: divergent reactions in the presence of organic ligands.
    Wang Z; Bush RT; Liu J
    Chemosphere; 2013 Nov; 93(9):1936-41. PubMed ID: 23880239
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Slow complexation kinetics for ferric iron and EDTA complexes make EDTA non-biodegradable.
    Willett AI; Rittmann BE
    Biodegradation; 2003 Apr; 14(2):105-21. PubMed ID: 12877466
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A comparison of four assays detecting oxidizing species. Correlated reactivity of Fe(III)-quin2, but not Fe(III)-EDTA, with hydrogen peroxide.
    Sandström BE; Granström M; Vezin H; Bienvenu P; Marklund SL
    Biol Trace Elem Res; 1995; 47(1-3):29-36. PubMed ID: 7779560
    [TBL] [Abstract][Full Text] [Related]  

  • 35. N,N'-bis-dibenzyl ethylenediaminediacetic acid (DBED): a site-specific hydroxyl radical scavenger acting as an "oxidative stress activatable" iron chelator in vitro.
    Galey JB; Dumats J; Beck I; Fernandez B; Hocquaux M
    Free Radic Res; 1995 Jan; 22(1):67-86. PubMed ID: 7889149
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reactions of copper(II)-N-polycarboxylate complexes with hydrogen peroxide in the presence of biological reductants: ESR evidence for the formation of hydroxyl radical.
    Ozawa T; Hanaki A; Onodera K; Kasai M
    Biochem Int; 1992 Mar; 26(3):477-83. PubMed ID: 1320883
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxidative damage to bovine serum albumin induced by hydroxyl radical generating systems of xanthine oxidase + EDTA-Fe3+ and ascorbate + EDTA-Fe3+.
    Miura T; Muraoka S; Ogiso T
    Chem Biol Interact; 1992 Dec; 85(2-3):243-54. PubMed ID: 1337312
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tripodal peptide hydroxamates as siderophore models. Iron(III) binding with ligands containing H-(alanyl)n-beta-(N-hydroxy)alanyl strands (n = 1-3) anchored by nitrilotriacetic acid.
    Hara Y; Shen L; Tsubouchi A; Akiyama M; Umemoto K
    Inorg Chem; 2000 Oct; 39(22):5074-82. PubMed ID: 11233204
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mass spectral evidence for carbonate-anion-radical-induced posttranslational modification of tryptophan to kynurenine in human Cu, Zn superoxide dismutase.
    Zhang H; Joseph J; Crow J; Kalyanaraman B
    Free Radic Biol Med; 2004 Dec; 37(12):2018-26. PubMed ID: 15544920
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of oxidation products and free radicals of tryptophan by mass spectrometry.
    Domingues MR; Domingues P; Reis A; Fonseca C; Amado FM; Ferrer-Correia AJ
    J Am Soc Mass Spectrom; 2003 Apr; 14(4):406-16. PubMed ID: 12686488
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.