These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

49 related articles for article (PubMed ID: 8199777)

  • 1. Identification of cytoplasmic and nuclear low-molecular-weight heat-shock proteins in tomato fruit.
    Kato S; Yamagishi K; Tatsuzawa F; Suzuki K; Takano S; Eguchi M; Hasegawa T
    Plant Cell Physiol; 1993 Mar; 34(2):367-70. PubMed ID: 8199777
    [No Abstract]   [Full Text] [Related]  

  • 2. Activation of DNA binding by the monomeric form of the P1 replication initiator RepA by heat shock proteins DnaJ and DnaK.
    DasGupta S; Mukhopadhyay G; Papp PP; Lewis MS; Chattoraj DK
    J Mol Biol; 1993 Jul; 232(1):23-34. PubMed ID: 8331660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Identification and isolation of proteins, recognizing the sequence of the human immunodeficiency virus (HIV-1) enhancer].
    Nikolaev LG
    Mol Biol (Mosk); 1996; 30(3):714-20. PubMed ID: 8754020
    [No Abstract]   [Full Text] [Related]  

  • 4. Detection, purification and characterization of a protein that binds the (6-4) photoproduct-containing DNA in HeLa cells.
    Fujiwara Y; Masutani C; Hanaoka F; Iwai S
    Nucleic Acids Symp Ser; 1997; (37):277-8. PubMed ID: 9586107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the proteins responsible for SAR DNA binding in nuclear matrix of Cucurbita pepo.
    Rzepecki R; Markiewicz E; Szopa J
    Acta Biochim Pol; 1995; 42(2):171-6. PubMed ID: 8588459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression and purification of human heat-shock transcription factor 1.
    Soncin F; Prevelige R; Calderwood SK
    Protein Expr Purif; 1997 Feb; 9(1):27-32. PubMed ID: 9116498
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytoplasmic-nuclear translocation of the Hsp70 protein during environmental stress in Trypanosoma cruzi.
    Martin F; Requena JM; Martin J; Alonso C; López MC
    Biochem Biophys Res Commun; 1993 Nov; 196(3):1155-62. PubMed ID: 8250874
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 70-kDa heat-shock cognate protein colocalizes with karyophilic proteins into the nucleus during their transport in vitro.
    Okuno Y; Imamoto N; Yoneda Y
    Exp Cell Res; 1993 May; 206(1):134-42. PubMed ID: 8482354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleocytoplasmic trafficking of the molecular chaperone Hsp104 in unstressed and heat-shocked cells.
    Tkach JM; Glover JR
    Traffic; 2008 Jan; 9(1):39-56. PubMed ID: 17973656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of sequence preferences of DNA binding proteins using pooled solid-phase sequencing of low degeneracy oligonucleotide mixtures.
    Gogos JA; Kafatos FC
    Methods Mol Biol; 1994; 30():295-312. PubMed ID: 8004203
    [No Abstract]   [Full Text] [Related]  

  • 11. Mycoplasmas regulate the expression of heat-shock protein genes through CIRCE-HrcA interactions.
    Chang LJ; Chen WH; Minion FC; Shiuan D
    Biochem Biophys Res Commun; 2008 Feb; 367(1):213-8. PubMed ID: 18164681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of heat-shock transcription factor 1 in heated Chinese hamster ovary cells is dependent on the cell cycle and is inhibited by sodium vanadate.
    He L; Fox MH
    Radiat Res; 1999 Mar; 151(3):283-92. PubMed ID: 10073666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The C-terminal hydrophobic repeat of Schizosaccharomyces pombe heat shock factor is not required for heat-induced DNA-binding.
    Saltsman KA; Prentice HL; Kingston RE
    Yeast; 1998 Jun; 14(8):733-46. PubMed ID: 9675818
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a protein that recognizes a distal negative regulatory element within the mouse mammary tumor virus long terminal repeat.
    Kang CJ; Peterson DO
    Virology; 1999 Nov; 264(1):211-9. PubMed ID: 10544147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phosphorylation of NF-I in vitro by cdc2 kinase.
    Kawamura H; Nagata K; Masamune Y; Nakanishi Y
    Biochem Biophys Res Commun; 1993 May; 192(3):1424-31. PubMed ID: 8507206
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of sequence-specific DNA-binding proteins by southwestern blotting.
    Labbé S; Stewart G; LaRochelle O; Poirier GG; Séguin C
    Methods Mol Biol; 2001; 148():255-64. PubMed ID: 11357589
    [No Abstract]   [Full Text] [Related]  

  • 17. Purification of heat shock transcription factor of Drosophila.
    Zhong M; Wisniewski J; Fritsch M; Mizuguchi G; Orosz A; Jedlicka P; Wu C
    Methods Enzymol; 1996; 274():113-9. PubMed ID: 8902799
    [No Abstract]   [Full Text] [Related]  

  • 18. Direct repeats in HSF binding sites.
    Raibaud O
    Nature; 1990 Mar; 344(6263):204. PubMed ID: 2314458
    [No Abstract]   [Full Text] [Related]  

  • 19. Small heat shock protein p26 associates with nuclear lamins and HSP70 in nuclei and nuclear matrix fractions from stressed cells.
    Willsie JK; Clegg JS
    J Cell Biochem; 2002; 84(3):601-14. PubMed ID: 11813265
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stable overexpression of human HSF-1 in murine cells suggests activation rather than expression of HSF-1 to be the key regulatory step in the heat shock gene expression.
    Mivechi NF; Shi XY; Hahn GM
    J Cell Biochem; 1995 Oct; 59(2):266-80. PubMed ID: 8904320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.