These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Evidence that Bacillus catabolite control protein CcpA interacts with RNA polymerase to inhibit transcription. Kim JH; Yang YK; Chambliss GH Mol Microbiol; 2005 Apr; 56(1):155-62. PubMed ID: 15773986 [TBL] [Abstract][Full Text] [Related]
23. Sequence and transcription mapping of Bacillus subtilis competence genes comB and comA, one of which is related to a family of bacterial regulatory determinants. Weinrauch Y; Guillen N; Dubnau DA J Bacteriol; 1989 Oct; 171(10):5362-75. PubMed ID: 2507523 [TBL] [Abstract][Full Text] [Related]
24. Catabolite repression of the Bacillus subtilis gnt operon exerted by two catabolite-responsive elements. Miwa Y; Nagura K; Eguchi S; Fukuda H; Deutscher J; Fujita Y Mol Microbiol; 1997 Mar; 23(6):1203-13. PubMed ID: 9106211 [TBL] [Abstract][Full Text] [Related]
25. Contributions of XylR CcpA and cre to diauxic growth of Bacillus megaterium and to xylose isomerase expression in the presence of glucose and xylose. Schmiedel D; Hillen W Mol Gen Genet; 1996 Feb; 250(3):259-66. PubMed ID: 8602140 [TBL] [Abstract][Full Text] [Related]
26. Catabolite repression in Bacillus subtilis: a global regulatory mechanism for the gram-positive bacteria? Hueck CJ; Hillen W Mol Microbiol; 1995 Feb; 15(3):395-401. PubMed ID: 7540244 [TBL] [Abstract][Full Text] [Related]
27. Catabolite repression of alpha-amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacl and galR repressors. Henkin TM; Grundy FJ; Nicholson WL; Chambliss GH Mol Microbiol; 1991 Mar; 5(3):575-84. PubMed ID: 1904524 [TBL] [Abstract][Full Text] [Related]
28. Sequence homologies of glucose-dehydrogenases of Bacillus megaterium and Bacillus subtilis. Fortnagel P; Lampel KA; Neitzke KD; Freese E J Theor Biol; 1986 Jun; 120(4):489-97. PubMed ID: 3099087 [TBL] [Abstract][Full Text] [Related]
29. A novel Bacillus subtilis gene involved in negative control of sporulation and degradative-enzyme production. Honjo M; Nakayama A; Fukazawa K; Kawamura K; Ando K; Hori M; Furutani Y J Bacteriol; 1990 Apr; 172(4):1783-90. PubMed ID: 2108124 [TBL] [Abstract][Full Text] [Related]
30. Possible function and some properties of the CcpA protein of Bacillus subtilis. Miwa Y; Saikawa M; Fujita Y Microbiology (Reading); 1994 Oct; 140 ( Pt 10)():2567-75. PubMed ID: 8000527 [TBL] [Abstract][Full Text] [Related]
31. Nucleotide sequence and genetic organization of the Bacillus subtilis comG operon. Albano M; Breitling R; Dubnau DA J Bacteriol; 1989 Oct; 171(10):5386-404. PubMed ID: 2507524 [TBL] [Abstract][Full Text] [Related]
33. Nucleotide sequences of the Bacillus subtilis flaD locus and a B. licheniformis homologue affecting the autolysin level and flagellation. Sekiguchi J; Ohsu H; Kuroda A; Moriyama H; Akamatsu T J Gen Microbiol; 1990 Jul; 136(7):1223-30. PubMed ID: 2121898 [TBL] [Abstract][Full Text] [Related]
34. Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon. Martin-Verstraete I; Stülke J; Klier A; Rapoport G J Bacteriol; 1995 Dec; 177(23):6919-27. PubMed ID: 7592486 [TBL] [Abstract][Full Text] [Related]
35. Cloning, sequencing, and molecular analysis of the dnaK locus from Bacillus subtilis. Wetzstein M; Völker U; Dedio J; Löbau S; Zuber U; Schiesswohl M; Herget C; Hecker M; Schumann W J Bacteriol; 1992 May; 174(10):3300-10. PubMed ID: 1339421 [TBL] [Abstract][Full Text] [Related]
36. Regulation of the Bacillus subtilis acetate kinase gene by CcpA. Grundy FJ; Waters DA; Allen SH; Henkin TM J Bacteriol; 1993 Nov; 175(22):7348-55. PubMed ID: 8226682 [TBL] [Abstract][Full Text] [Related]
38. Four additional genes in the sigB operon of Bacillus subtilis that control activity of the general stress factor sigma B in response to environmental signals. Wise AA; Price CW J Bacteriol; 1995 Jan; 177(1):123-33. PubMed ID: 8002610 [TBL] [Abstract][Full Text] [Related]
39. Transcriptome analysis of temporal regulation of carbon metabolism by CcpA in Bacillus subtilis reveals additional target genes. Lulko AT; Buist G; Kok J; Kuipers OP J Mol Microbiol Biotechnol; 2007; 12(1-2):82-95. PubMed ID: 17183215 [TBL] [Abstract][Full Text] [Related]
40. Phosphorylation of either crh or HPr mediates binding of CcpA to the bacillus subtilis xyn cre and catabolite repression of the xyn operon. Galinier A; Deutscher J; Martin-Verstraete I J Mol Biol; 1999 Feb; 286(2):307-14. PubMed ID: 9973552 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]