These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 8200535)

  • 1. Deletion of P9 and stem-loop structures downstream from the catalytic core affects both 5' and 3' splicing activities in a group-I intron.
    Caprara MG; Waring RB
    Gene; 1994 May; 143(1):29-37. PubMed ID: 8200535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deletion of nonconserved helices near the 3' end of the rRNA intron of Tetrahymena thermophila alters self-splicing but not core catalytic activity.
    Barfod ET; Cech TR
    Genes Dev; 1988 Jun; 2(6):652-63. PubMed ID: 3417146
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic and secondary structure analysis of Naegleria andersoni GIR1, a group I ribozyme whose putative biological function is site-specific hydrolysis.
    Jabri E; Aigner S; Cech TR
    Biochemistry; 1997 Dec; 36(51):16345-54. PubMed ID: 9405070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A tertiary interaction in the Tetrahymena intron contributes to selection of the 5' splice site.
    Downs WD; Cech TR
    Genes Dev; 1994 May; 8(10):1198-211. PubMed ID: 7926724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Folding intermediates of a self-splicing RNA: mispairing of the catalytic core.
    Pan J; Woodson SA
    J Mol Biol; 1998 Jul; 280(4):597-609. PubMed ID: 9677291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two universally conserved adenosines of the group I intron that are important for self-splicing but not for core catalytic activity.
    Williams KP; Fujimoto DN; Inoue T
    J Biochem; 1994 Jan; 115(1):126-30. PubMed ID: 8188618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Requirements of a group I intron for reactions at the 3' splice site.
    van der Horst G; Inoue T
    J Mol Biol; 1993 Feb; 229(3):685-94. PubMed ID: 8433366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A shortened form of the Tetrahymena thermophila group I intron can catalyze the complete splicing reaction in trans.
    Sargueil B; Tanner NK
    J Mol Biol; 1993 Oct; 233(4):629-43. PubMed ID: 8411170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-splicing of the Tetrahymena group I ribozyme without conserved base-triples.
    Ikawa Y; Yoshioka W; Ohki Y; Shiraishi H; Inoue T
    Genes Cells; 2001 May; 6(5):411-20. PubMed ID: 11380619
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 3' splice site-binding sequence in the catalytic core of a group I intron.
    Burke JM; Esherick JS; Burfeind WR; King JL
    Nature; 1990 Mar; 344(6261):80-2. PubMed ID: 2406615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Destabilizing effect of an rRNA stem-loop on an attenuator hairpin in the 5' exon of the Tetrahymena pre-rRNA.
    Cao Y; Woodson SA
    RNA; 1998 Aug; 4(8):901-14. PubMed ID: 9701282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A mechanistic framework for the second step of splicing catalyzed by the Tetrahymena ribozyme.
    Bevilacqua PC; Sugimoto N; Turner DH
    Biochemistry; 1996 Jan; 35(2):648-58. PubMed ID: 8555239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of rate-determining conformational changes during self-splicing of the Tetrahymena intron.
    Emerick VL; Pan J; Woodson SA
    Biochemistry; 1996 Oct; 35(41):13469-77. PubMed ID: 8873616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An RNA fragment consisting of the P7 and P9.0 stems and the 3'-terminal guanosine of the Tetrahymena group I intron.
    Watanabe S; Kawai G; Muto Y; Watanabe K; Inoue T; Yokoyama S
    Nucleic Acids Res; 1996 Apr; 24(7):1337-44. PubMed ID: 8614639
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comprehensive characterization of a group IB intron and its encoded maturase reveals that protein-assisted splicing requires an almost intact intron RNA.
    Geese WJ; Waring RB
    J Mol Biol; 2001 May; 308(4):609-22. PubMed ID: 11350164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New loop-loop tertiary interactions in self-splicing introns of subgroup IC and ID: a complete 3D model of the Tetrahymena thermophila ribozyme.
    Lehnert V; Jaeger L; Michel F; Westhof E
    Chem Biol; 1996 Dec; 3(12):993-1009. PubMed ID: 9000010
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A region of group I introns that contains universally conserved residues but is not essential for self-splicing.
    Williams KP; Fujimoto DN; Inoue T
    Proc Natl Acad Sci U S A; 1992 Nov; 89(21):10400-4. PubMed ID: 1279677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A base triple in the Tetrahymena group I core affects the reaction equilibrium via a threshold effect.
    Karbstein K; Tang KH; Herschlag D
    RNA; 2004 Nov; 10(11):1730-9. PubMed ID: 15496521
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Important 2'-hydroxyl groups within the core of a group I intron.
    Caprara MG; Waring RB
    Biochemistry; 1993 Apr; 32(14):3604-10. PubMed ID: 8466902
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of a group I ribozyme domain: principles of RNA packing.
    Cate JH; Gooding AR; Podell E; Zhou K; Golden BL; Kundrot CE; Cech TR; Doudna JA
    Science; 1996 Sep; 273(5282):1678-85. PubMed ID: 8781224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.