BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 8201410)

  • 1. Effects of anoxia on rat midbrain dopamine neurons.
    Mercuri NB; Bonci A; Johnson SW; Stratta F; Calabresi P; Bernardi G
    J Neurophysiol; 1994 Mar; 71(3):1165-73. PubMed ID: 8201410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of a potassium conductance in rat midbrain dopamine neurons by intracellular adenosine triphosphate (ATP) and the sulfonylureas tolbutamide and glibenclamide.
    Stanford IM; Lacey MG
    J Neurosci; 1995 Jun; 15(6):4651-7. PubMed ID: 7790930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a barium-sensitive outward current following glutamate application on rat midbrain dopaminergic cells.
    Mercuri NB; Bonci A; Calabresi P; Bernardi G
    Eur J Neurosci; 1996 Aug; 8(8):1780-6. PubMed ID: 8921268
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole cell patch-clamp recordings of rat midbrain dopaminergic neurons isolate a sulphonylurea- and ATP-sensitive component of potassium currents activated by hypoxia.
    Guatteo E; Federici M; Siniscalchi A; Knöpfel T; Mercuri NB; Bernardi G
    J Neurophysiol; 1998 Mar; 79(3):1239-45. PubMed ID: 9497405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dopamine inhibition: enhancement of GABA activity and potassium channel activation in hypothalamic and arcuate nucleus neurons.
    Belousov AB; van den Pol AN
    J Neurophysiol; 1997 Aug; 78(2):674-88. PubMed ID: 9307104
    [TBL] [Abstract][Full Text] [Related]  

  • 6. KATP channel mediation of anoxia-induced outward current in rat dorsal vagal neurons in vitro.
    Trapp S; Ballanyi K
    J Physiol; 1995 Aug; 487(1):37-50. PubMed ID: 7473257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of early anoxia-induced suppression of the GABAA-mediated inhibitory postsynaptic current.
    Katchman AN; Vicini S; Hershkowitz N
    J Neurophysiol; 1994 Mar; 71(3):1128-38. PubMed ID: 8201407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacological identification of the K(+) currents mediating the hypoglycemic hyperpolarization of rat midbrain dopaminergic neurones.
    Marinelli S; Bernardi G; Giacomini P; Mercuri NB
    Neuropharmacology; 2000 Apr; 39(6):1021-8. PubMed ID: 10727712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The actions of hydrogen sulfide on dorsal raphe serotonergic neurons in vitro.
    Kombian SB; Reiffenstein RJ; Colmers WF
    J Neurophysiol; 1993 Jul; 70(1):81-96. PubMed ID: 8395590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Glutamate metabotropic receptors increase a Ca(2+)-activated nonspecific cationic current in CA1 hippocampal neurons.
    Crépel V; Aniksztejn L; Ben-Ari Y; Hammond C
    J Neurophysiol; 1994 Oct; 72(4):1561-9. PubMed ID: 7823086
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ionic mechanisms for the subthreshold oscillations and differential electroresponsiveness of medial entorhinal cortex layer II neurons.
    Klink R; Alonso A
    J Neurophysiol; 1993 Jul; 70(1):144-57. PubMed ID: 7689647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of methylphenidate on the membrane potential and current in neurons of the rat locus coeruleus.
    Ishimatsu M; Kidani Y; Tsuda A; Akasu T
    J Neurophysiol; 2002 Mar; 87(3):1206-12. PubMed ID: 11877494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synaptic responses of guinea pig and rat central amygdala neurons in vitro.
    Nose I; Higashi H; Inokuchi H; Nishi S
    J Neurophysiol; 1991 May; 65(5):1227-41. PubMed ID: 1678422
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperpolarization-activated currents, IH and IKIR, in rat dorsal motor nucleus of the vagus neurons in vitro.
    Travagli RA; Gillis RA
    J Neurophysiol; 1994 Apr; 71(4):1308-17. PubMed ID: 8035216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A selective LTP of NMDA receptor-mediated currents induced by anoxia in CA1 hippocampal neurons.
    Crépel V; Hammond C; Chinestra P; Diabira D; Ben-Ari Y
    J Neurophysiol; 1993 Nov; 70(5):2045-55. PubMed ID: 8294969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionic mechanisms of intrinsic oscillations in neurons of the basolateral amygdaloid complex.
    Pape HC; Driesang RB
    J Neurophysiol; 1998 Jan; 79(1):217-26. PubMed ID: 9425193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Blockade of SK-type Ca2+-activated K+ channels uncovers a Ca2+-dependent slow afterdepolarization in nigral dopamine neurons.
    Ping HX; Shepard PD
    J Neurophysiol; 1999 Mar; 81(3):977-84. PubMed ID: 10085326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Responses of rat mesencephalic dopaminergic neurons to a prolonged period of oxygen deprivation.
    Mercuri NB; Bonci A; Calabresi P; Stratta F; Bernardi G
    Neuroscience; 1994 Dec; 63(3):757-64. PubMed ID: 7898675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the mechanisms underlying hypoxia-induced membrane depolarization in striatal neurons.
    Calabresi P; Pisani A; Mercuri NB; Bernardi G
    Brain; 1995 Aug; 118 ( Pt 4)():1027-38. PubMed ID: 7655879
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitatory transmission in the basolateral amygdala.
    Rainnie DG; Asprodini EK; Shinnick-Gallagher P
    J Neurophysiol; 1991 Sep; 66(3):986-98. PubMed ID: 1684383
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.