These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
1079 related articles for article (PubMed ID: 8201414)
1. Inertial representation of angular motion in the vestibular system of rhesus monkeys. I. Vestibuloocular reflex. Angelaki DE; Hess BJ J Neurophysiol; 1994 Mar; 71(3):1222-49. PubMed ID: 8201414 [TBL] [Abstract][Full Text] [Related]
2. Inertial representation of angular motion in the vestibular system of rhesus monkeys. II. Otolith-controlled transformation that depends on an intact cerebellar nodulus. Angelaki DE; Hess BJ J Neurophysiol; 1995 May; 73(5):1729-51. PubMed ID: 7623076 [TBL] [Abstract][Full Text] [Related]
3. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. I. Linear acceleration responses during off-vertical axis rotation. Angelaki DE; Hess BJ J Neurophysiol; 1996 Jun; 75(6):2405-24. PubMed ID: 8793753 [TBL] [Abstract][Full Text] [Related]
4. Kinematic principles of primate rotational vestibulo-ocular reflex. II. Gravity-dependent modulation of primary eye position. Hess BJ; Angelaki DE J Neurophysiol; 1997 Oct; 78(4):2203-16. PubMed ID: 9325387 [TBL] [Abstract][Full Text] [Related]
5. Adaptation of primate vestibuloocular reflex to altered peripheral vestibular inputs. II Spatiotemporal properties of the adapted slow-phase eye velocity. Angelaki DE; Hess BJ J Neurophysiol; 1996 Nov; 76(5):2954-71. PubMed ID: 8930247 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional organization of otolith-ocular reflexes in rhesus monkeys. II. Inertial detection of angular velocity. Angelaki DE; Hess BJ J Neurophysiol; 1996 Jun; 75(6):2425-40. PubMed ID: 8793754 [TBL] [Abstract][Full Text] [Related]
7. Three-dimensional orientation of the eye rotation axis during the Purkinje sensation. Fetter M Brain Res Bull; 1996; 40(5-6):315-8; discussion 318-9. PubMed ID: 8886353 [TBL] [Abstract][Full Text] [Related]
8. Otolith-semicircular canal interaction during postrotatory nystagmus in humans. Fetter M; Heimberger J; Black R; Hermann W; Sievering F; Dichgans J Exp Brain Res; 1996 Mar; 108(3):463-72. PubMed ID: 8801126 [TBL] [Abstract][Full Text] [Related]
9. Three dimensional eye movements of squirrel monkeys following postrotatory tilt. Merfeld DM; Young LR; Paige GD; Tomko DL J Vestib Res; 1993; 3(2):123-39. PubMed ID: 8275249 [TBL] [Abstract][Full Text] [Related]
10. Rotational kinematics of the human vestibuloocular reflex. III. Listing's law. Misslisch H; Tweed D; Fetter M; Sievering D; Koenig E J Neurophysiol; 1994 Nov; 72(5):2490-502. PubMed ID: 7884474 [TBL] [Abstract][Full Text] [Related]
11. Canal-otolith interactions after off-vertical axis rotations. II. Spatiotemporal properties of roll and pitch postrotatory vestibuloocular reflexes. Hess BJ; Jaggi-Schwarz K; Misslisch H J Neurophysiol; 2005 Mar; 93(3):1633-46. PubMed ID: 15525812 [TBL] [Abstract][Full Text] [Related]
12. Effects of tilt of the gravito-inertial acceleration vector on the angular vestibuloocular reflex during centrifugation. Wearne S; Raphan T; Cohen B J Neurophysiol; 1999 May; 81(5):2175-90. PubMed ID: 10322058 [TBL] [Abstract][Full Text] [Related]
13. Control of spatial orientation of the angular vestibulo-ocular reflex by the nodulus and uvula of the vestibulocerebellum. Sheliga BM; Yakushin SB; Silvers A; Raphan T; Cohen B Ann N Y Acad Sci; 1999 May; 871():94-122. PubMed ID: 10372065 [TBL] [Abstract][Full Text] [Related]
14. Three-dimensional vector analysis of the human vestibuloocular reflex in response to high-acceleration head rotations. I. Responses in normal subjects. Aw ST; Haslwanter T; Halmagyi GM; Curthoys IS; Yavor RA; Todd MJ J Neurophysiol; 1996 Dec; 76(6):4009-20. PubMed ID: 8985896 [TBL] [Abstract][Full Text] [Related]
15. Rotational kinematics of the human vestibuloocular reflex. II. Velocity steps. Tweed D; Fetter M; Sievering D; Misslisch H; Koenig E J Neurophysiol; 1994 Nov; 72(5):2480-9. PubMed ID: 7884473 [TBL] [Abstract][Full Text] [Related]
16. Compensatory and orienting eye movements induced by off-vertical axis rotation (OVAR) in monkeys. Kushiro K; Dai M; Kunin M; Yakushin SB; Cohen B; Raphan T J Neurophysiol; 2002 Nov; 88(5):2445-62. PubMed ID: 12424285 [TBL] [Abstract][Full Text] [Related]
17. Rotational kinematics of the human vestibuloocular reflex. I. Gain matrices. Tweed D; Sievering D; Misslisch H; Fetter M; Zee D; Koenig E J Neurophysiol; 1994 Nov; 72(5):2467-79. PubMed ID: 7884472 [TBL] [Abstract][Full Text] [Related]
18. Control of spatial orientation of the angular vestibuloocular reflex by the nodulus and uvula. Wearne S; Raphan T; Cohen B J Neurophysiol; 1998 May; 79(5):2690-715. PubMed ID: 9582239 [TBL] [Abstract][Full Text] [Related]
19. Adaptation of primate vestibuloocular reflex to altered peripheral vestibular inputs. I. Frequency-specific recovery of horizontal VOR after inactivation of the lateral semicircular canals. Angelaki DE; Hess BJ; Arai Y; Suzuki J J Neurophysiol; 1996 Nov; 76(5):2941-53. PubMed ID: 8930246 [TBL] [Abstract][Full Text] [Related]
20. Spatial orientation of the vestibular system: dependence of optokinetic after-nystagmus on gravity. Dai MJ; Raphan T; Cohen B J Neurophysiol; 1991 Oct; 66(4):1422-39. PubMed ID: 1761991 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]