BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 8201526)

  • 1. Metabolism and transport of the pentapeptide metkephamid by brush-border membrane vesicles of rat intestine.
    Langguth P; Bohner V; Biber J; Merkle HP
    J Pharm Pharmacol; 1994 Jan; 46(1):34-40. PubMed ID: 8201526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oral absorption of peptides: the effect of absorption site and enzyme inhibition on the systemic availability of metkephamid.
    Langguth P; Merkle HP; Amidon GL
    Pharm Res; 1994 Apr; 11(4):528-35. PubMed ID: 8058610
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gastrointestinal absorption of peptide drug: quantitative evaluation of the degradation and the permeation of metkephamid in rat small intestine.
    Taki Y; Sakane T; Nadai T; Sezaki H; Amidon GL; Langguth P; Yamashita S
    J Pharmacol Exp Ther; 1995 Jul; 274(1):373-7. PubMed ID: 7616421
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colonic absorption and bioavailability of the pentapeptide metkephamid in the rat.
    Langguth P; Breves G; Stöckli A; Merkle HP; Wolffram S
    Pharm Res; 1994 Nov; 11(11):1640-5. PubMed ID: 7870683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First-pass metabolism of peptide drugs in rat perfused liver.
    Taki Y; Sakane T; Nadai T; Sezaki H; Amidon GL; Langguth P; Yamashita S
    J Pharm Pharmacol; 1998 Sep; 50(9):1013-8. PubMed ID: 9811162
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intestinal uptake of dipeptides and beta-lactam antibiotics. I. The intestinal uptake system for dipeptides and beta-lactam antibiotics is not part of a brush border membrane peptidase.
    Kramer W; Dechent C; Girbig F; Gutjahr U; Neubauer H
    Biochim Biophys Acta; 1990 Nov; 1030(1):41-9. PubMed ID: 1979919
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic evidence for a common transporter for glycylsarcosine and phenylalanylprolylalanine in renal brush-border membrane vesicles.
    Tiruppathi C; Ganapathy V; Leibach FH
    J Biol Chem; 1990 Sep; 265(25):14870-4. PubMed ID: 2394703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport of peptides in renal brush border membrane vesicles. Suitability of 125I-labelled tyrosyl peptides as substrates.
    Tiruppathi C; Ganapathy V; Leibach FH
    Biochim Biophys Acta; 1991 Oct; 1069(1):14-20. PubMed ID: 1681904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intestinal assimilation of a tetrapeptide in the rat. Obligate function of brush border aminopeptidase.
    Smithson KW; Gray GM
    J Clin Invest; 1977 Sep; 60(3):665-74. PubMed ID: 893670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for tripeptide/H+ co-transport in rabbit renal brush-border membrane vesicles.
    Tiruppathi C; Kulanthaivel P; Ganapathy V; Leibach FH
    Biochem J; 1990 May; 268(1):27-33. PubMed ID: 2160811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intestinal assimilation of a proline-containing tetrapeptide. Role of a brush border membrane postproline dipeptidyl aminopeptidase IV.
    Morita A; Chung YC; Freeman HJ; Erickson RH; Sleisenger MH; Kim YS
    J Clin Invest; 1983 Aug; 72(2):610-6. PubMed ID: 6135710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transport of glycyl-L-proline by human intestinal brush border membrane vesicles.
    Rajendran VM; Ansari SA; Harig JM; Adams MB; Khan AH; Ramaswamy K
    Gastroenterology; 1985 Dec; 89(6):1298-304. PubMed ID: 4054522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of dipeptide transport in normal and papain-treated brush border membrane vesicles from mouse intestine. I. Uptake of glycyl-L-phenylalanine.
    Berteloot A; Khan AH; Ramaswamy K
    Biochim Biophys Acta; 1981 Dec; 649(2):179-88. PubMed ID: 7032591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of the transport characteristics of ceftibuten in rat renal and intestinal brush-border membranes.
    Naasani I; Sato K; Iseki K; Sugawara M; Kobayashi M; Miyazaki K
    Biochim Biophys Acta; 1995 Sep; 1231(2):163-8. PubMed ID: 7662695
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure-permeation relations of met-enkephalin peptide analogues on absorption and secretion mechanisms in Caco-2 monolayers.
    Lang VB; Langguth P; Ottiger C; Wunderli-Allenspach H; Rognan D; Rothen-Rutishauser B; Perriard JC; Lang S; Biber J; Merkle HP
    J Pharm Sci; 1997 Jul; 86(7):846-53. PubMed ID: 9232527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transport of glycyl-L-proline in intestinal brush-border membrane vesicles of the suckling rat: characteristics and maturation.
    Said HM; Ghishan FK; Redha R
    Biochim Biophys Acta; 1988 Jun; 941(2):232-40. PubMed ID: 3382647
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterisation of intestinal peptide transporter of the Antarctic haemoglobinless teleost Chionodraco hamatus.
    Maffia M; Rizzello A; Acierno R; Verri T; Rollo M; Danieli A; Döring F; Daniel H; Storelli C
    J Exp Biol; 2003 Feb; 206(Pt 4):705-14. PubMed ID: 12517988
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationships between mucosal hydrolysis and transport of two phenylalanine dipeptides.
    Silk DB; Nicholson JA; Kim YS
    Gut; 1976 Nov; 17(11):870-6. PubMed ID: 12068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oral absorption of peptides: influence of pH and inhibitors on the intestinal hydrolysis of leu-enkephalin and analogues.
    Friedman DI; Amidon GL
    Pharm Res; 1991 Jan; 8(1):93-6. PubMed ID: 2014216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. H(+)-coupled uphill transport of the dipeptide glycylsarcosine by bovine intestinal brush-border membrane vesicles.
    Wolffram S; Grenacher B; Scharrer E
    J Dairy Sci; 1998 Oct; 81(10):2595-603. PubMed ID: 9812265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.