BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 8201708)

  • 1. Influence of angle on wall shear stress distribution for an end-to-side anastomosis.
    Ojha M; Cobbold RS; Johnston KW
    J Vasc Surg; 1994 Jun; 19(6):1067-73. PubMed ID: 8201708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hemodynamics of a side-to-end proximal arterial anastomosis model.
    Ojha M; Cobbold RS; Johnston KW
    J Vasc Surg; 1993 Apr; 17(4):646-55. PubMed ID: 8464081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spatial and temporal variations of wall shear stress within an end-to-side arterial anastomosis model.
    Ojha M
    J Biomech; 1993 Dec; 26(12):1377-88. PubMed ID: 8308043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compliance and diameter mismatch affect the wall shear rate distribution near an end-to-end anastomosis.
    Weston MW; Rhee K; Tarbell JM
    J Biomech; 1996 Feb; 29(2):187-98. PubMed ID: 8849812
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particle image velocimetry measurements of three proximal anastomosis models under a pulsatile flow condition.
    Chua LP; Ji WF; Yu CM; Zhou TM; Tan YS
    Proc Inst Mech Eng H; 2008 Apr; 222(3):249-63. PubMed ID: 18491695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow waveform effects on end-to-side anastomotic flow patterns.
    Ethier CR; Steinman DA; Zhang X; Karpik SR; Ojha M
    J Biomech; 1998 Jul; 31(7):609-17. PubMed ID: 9796683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of angle on wall shear stresses in a LIMA to LAD anastomosis: numerical modelling of pulsatile flow.
    Freshwater IJ; Morsi YS; Lai T
    Proc Inst Mech Eng H; 2006 Oct; 220(7):743-57. PubMed ID: 17117764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational design of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis.
    Lei M; Archie JP; Kleinstreuer C
    J Vasc Surg; 1997 Apr; 25(4):637-46. PubMed ID: 9129618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Steady and pulsatile flow fields in an end-to-side arterial anastomosis model.
    Ojha M; Ethier CR; Johnston KW; Cobbold RS
    J Vasc Surg; 1990 Dec; 12(6):747-53. PubMed ID: 2243410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of the wall shear rate distribution near the end-to-end anastomosis of a rigid graft and a compliant artery.
    Rhee K; Tarbell JM
    J Biomech; 1994 Mar; 27(3):329-38. PubMed ID: 8051193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ratio of diameters between the target artery and the bypass modifies hemodynamic parameters related to intimal hyperplasia in the distal end-to-side anastomosis.
    Grus T; Lambert L; Matěcha J; Grusová G; Špaček M; Mlček M
    Physiol Res; 2016 Dec; 65(6):901-908. PubMed ID: 27539100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correlation of intimal hyperplasia development and shear stress distribution at the distal end-side-anastomosis, in vitro study using particle image velocimetry.
    Heise M; Krüger U; Rückert R; Pfitzman R; Neuhaus P; Settmacher U
    Eur J Vasc Endovasc Surg; 2003 Oct; 26(4):357-66. PubMed ID: 14511996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A numerical simulation of flow in a two-dimensional end-to-side anastomosis model.
    Steinman DA; Vinh B; Ethier CR; Ojha M; Cobbold RS; Johnston KW
    J Biomech Eng; 1993 Feb; 115(1):112-8. PubMed ID: 8445888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of wall distensibility on flow in a two-dimensional end-to-side anastomosis.
    Steinman DA; Ethier CR
    J Biomech Eng; 1994 Aug; 116(3):294-301. PubMed ID: 7799630
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluid dynamics, wall mechanics, and oxygen transfer in peripheral bypass anastomoses.
    Perktold K; Leuprecht A; Prosi M; Berk T; Czerny M; Trubel W; Schima H
    Ann Biomed Eng; 2002 Apr; 30(4):447-60. PubMed ID: 12085997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow dynamics across end-to-end vascular bypass graft anastomoses.
    Kim YH; Chandran KB; Bower TJ; Corson JD
    Ann Biomed Eng; 1993; 21(4):311-20. PubMed ID: 8214816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical study on the pulsatile flow characteristics of proximal anastomotic models.
    Chua LP; Zhang JM; Yu SC; Ghista DN; Tan YS
    Proc Inst Mech Eng H; 2005 Sep; 219(5):361-79. PubMed ID: 16225153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of out-of-plane geometry on pulsatile flow within a distal end-to-side anastomosis.
    Papaharilaou Y; Doorly DJ; Sherwin SJ
    J Biomech; 2002 Sep; 35(9):1225-39. PubMed ID: 12163312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of geometry and flow division on flow structures in models of the distal end-to-side anastomosis.
    Hughes PE; How TV
    J Biomech; 1996 Jul; 29(7):855-72. PubMed ID: 8809616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical simulation of wall shear stress and particle-based hemodynamic parameters in pre-cuffed and streamlined end-to-side anastomoses.
    Longest PW; Kleinstreuer C; Deanda A
    Ann Biomed Eng; 2005 Dec; 33(12):1752-66. PubMed ID: 16389524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.