These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. The effect of angle on wall shear stresses in a LIMA to LAD anastomosis: numerical modelling of pulsatile flow. Freshwater IJ; Morsi YS; Lai T Proc Inst Mech Eng H; 2006 Oct; 220(7):743-57. PubMed ID: 17117764 [TBL] [Abstract][Full Text] [Related]
8. Computational design of a bypass graft that minimizes wall shear stress gradients in the region of the distal anastomosis. Lei M; Archie JP; Kleinstreuer C J Vasc Surg; 1997 Apr; 25(4):637-46. PubMed ID: 9129618 [TBL] [Abstract][Full Text] [Related]
9. Steady and pulsatile flow fields in an end-to-side arterial anastomosis model. Ojha M; Ethier CR; Johnston KW; Cobbold RS J Vasc Surg; 1990 Dec; 12(6):747-53. PubMed ID: 2243410 [TBL] [Abstract][Full Text] [Related]
10. A study of the wall shear rate distribution near the end-to-end anastomosis of a rigid graft and a compliant artery. Rhee K; Tarbell JM J Biomech; 1994 Mar; 27(3):329-38. PubMed ID: 8051193 [TBL] [Abstract][Full Text] [Related]
11. The ratio of diameters between the target artery and the bypass modifies hemodynamic parameters related to intimal hyperplasia in the distal end-to-side anastomosis. Grus T; Lambert L; Matěcha J; Grusová G; Špaček M; Mlček M Physiol Res; 2016 Dec; 65(6):901-908. PubMed ID: 27539100 [TBL] [Abstract][Full Text] [Related]
12. Correlation of intimal hyperplasia development and shear stress distribution at the distal end-side-anastomosis, in vitro study using particle image velocimetry. Heise M; Krüger U; Rückert R; Pfitzman R; Neuhaus P; Settmacher U Eur J Vasc Endovasc Surg; 2003 Oct; 26(4):357-66. PubMed ID: 14511996 [TBL] [Abstract][Full Text] [Related]
13. A numerical simulation of flow in a two-dimensional end-to-side anastomosis model. Steinman DA; Vinh B; Ethier CR; Ojha M; Cobbold RS; Johnston KW J Biomech Eng; 1993 Feb; 115(1):112-8. PubMed ID: 8445888 [TBL] [Abstract][Full Text] [Related]
14. The effect of wall distensibility on flow in a two-dimensional end-to-side anastomosis. Steinman DA; Ethier CR J Biomech Eng; 1994 Aug; 116(3):294-301. PubMed ID: 7799630 [TBL] [Abstract][Full Text] [Related]
15. Fluid dynamics, wall mechanics, and oxygen transfer in peripheral bypass anastomoses. Perktold K; Leuprecht A; Prosi M; Berk T; Czerny M; Trubel W; Schima H Ann Biomed Eng; 2002 Apr; 30(4):447-60. PubMed ID: 12085997 [TBL] [Abstract][Full Text] [Related]
16. Flow dynamics across end-to-end vascular bypass graft anastomoses. Kim YH; Chandran KB; Bower TJ; Corson JD Ann Biomed Eng; 1993; 21(4):311-20. PubMed ID: 8214816 [TBL] [Abstract][Full Text] [Related]
17. Numerical study on the pulsatile flow characteristics of proximal anastomotic models. Chua LP; Zhang JM; Yu SC; Ghista DN; Tan YS Proc Inst Mech Eng H; 2005 Sep; 219(5):361-79. PubMed ID: 16225153 [TBL] [Abstract][Full Text] [Related]
18. The influence of out-of-plane geometry on pulsatile flow within a distal end-to-side anastomosis. Papaharilaou Y; Doorly DJ; Sherwin SJ J Biomech; 2002 Sep; 35(9):1225-39. PubMed ID: 12163312 [TBL] [Abstract][Full Text] [Related]
19. Effects of geometry and flow division on flow structures in models of the distal end-to-side anastomosis. Hughes PE; How TV J Biomech; 1996 Jul; 29(7):855-72. PubMed ID: 8809616 [TBL] [Abstract][Full Text] [Related]
20. Numerical simulation of wall shear stress and particle-based hemodynamic parameters in pre-cuffed and streamlined end-to-side anastomoses. Longest PW; Kleinstreuer C; Deanda A Ann Biomed Eng; 2005 Dec; 33(12):1752-66. PubMed ID: 16389524 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]