These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 8201708)

  • 21. Numerical model study of flow dynamics through an end-to-side anastomosis: choice of anastomosis angle and prosthesis diameter.
    Pousset Y; Lermusiaux P; Berton G; Le Gouez JM; Leroy R
    Ann Vasc Surg; 2006 Nov; 20(6):773-9. PubMed ID: 17136315
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wall shear stress temporal gradient and anastomotic intimal hyperplasia.
    Ojha M
    Circ Res; 1994 Jun; 74(6):1227-31. PubMed ID: 8187288
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effect of angle and flow rate upon hemodynamics in distal vascular graft anastomoses: a numerical model study.
    Fei DY; Thomas JD; Rittgers SE
    J Biomech Eng; 1994 Aug; 116(3):331-6. PubMed ID: 7799636
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sequential venous anastomosis design to enhance patency of arterio-venous grafts for hemodialysis.
    Kabinejadian F; Su B; Ghista DN; Ismail M; Kim S; Leo HL
    Comput Methods Biomech Biomed Engin; 2017 Jan; 20(1):85-93. PubMed ID: 27328413
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hemodynamic parameters and early intimal thickening in branching blood vessels.
    Kleinstreuer C; Hyun S; Buchanan JR; Longest PW; Archie JP; Truskey GA
    Crit Rev Biomed Eng; 2001; 29(1):1-64. PubMed ID: 11321642
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intimal hyperplasia and hemodynamic factors in arterial bypass and arteriovenous grafts: a review.
    Haruguchi H; Teraoka S
    J Artif Organs; 2003; 6(4):227-35. PubMed ID: 14691664
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hemodynamic Parameters and Early Intimal Thickening in Branching Blood Vessels.
    Kleinstreuer C; Hyun S; Buchanan JR; Longest PW; Archie JP; Truskey GA
    Crit Rev Biomed Eng; 2017; 45(1-6):319-382. PubMed ID: 29953383
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relative contribution of wall shear stress and injury in experimental intimal thickening at PTFE end-to-side arterial anastomoses.
    Loth F; Jones SA; Zarins CK; Giddens DP; Nassar RF; Glagov S; Bassiouny HS
    J Biomech Eng; 2002 Feb; 124(1):44-51. PubMed ID: 11871604
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rheological effects of blood in a nonplanar distal end-to-side anastomosis.
    Wang QQ; Ping BH; Xu QB; Wang W
    J Biomech Eng; 2008 Oct; 130(5):051009. PubMed ID: 19045516
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational investigations of a new prosthetic femoral-popliteal bypass graft design.
    O'Brien TP; Grace P; Walsh M; Burke P; McGloughlin T
    J Vasc Surg; 2005 Dec; 42(6):1169-75. PubMed ID: 16376210
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Numerical simulations of pulsatile flow in an end-to-side anastomosis model.
    Shaik E; Hoffmann KA; Dietiker JF
    Mol Cell Biomech; 2007 Mar; 4(1):41-53. PubMed ID: 17879770
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simulation of flow through a Miller cuff bypass graft.
    Henry FS; Küpper C; Lewington NP
    Comput Methods Biomech Biomed Engin; 2002 Jun; 5(3):207-17. PubMed ID: 12186713
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Analysis of Computational Fluid Dynamics and Particle Image Velocimetry Models of Distal-End Side-to-Side and End-to-Side Anastomoses for Coronary Artery Bypass Grafting in a Pulsatile Flow.
    Shintani Y; Iino K; Yamamoto Y; Kato H; Takemura H; Kiwata T
    Circ J; 2017 Dec; 82(1):110-117. PubMed ID: 28824030
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Steady flow analysis in the vicinity of an end-to-end anastomosis.
    Kim YH; Chandran KB
    Biorheology; 1993; 30(2):117-30. PubMed ID: 8400150
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of out-of-plane geometry on the flow within a distal end-to-side anastomosis.
    Sherwin SJ; Shah O; Doorly DJ; Peiró J; Papaharilaou Y; Watkins N; Caro CG; Dumoulin CL
    J Biomech Eng; 2000 Feb; 122(1):86-95. PubMed ID: 10790834
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Pulsatile flow in an end-to-side vascular graft model: comparison of computations with experimental data.
    Lei M; Giddens DP; Jones SA; Loth F; Bassiouny H
    J Biomech Eng; 2001 Feb; 123(1):80-7. PubMed ID: 11277306
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flow dynamic effect of the anastomotic angle: a numerical study of pulsatile flow in vascular graft anastomoses models.
    Perktold K; Tatzl H; Rappitsch G
    Technol Health Care; 1994 Jan; 1(3):197-207. PubMed ID: 25273367
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of radial wall motion and flow waveform on the wall shear rate distribution in the divergent vascular graft.
    Rhee K; Lee SM
    Ann Biomed Eng; 1998; 26(6):955-64. PubMed ID: 9846934
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interposition vein cuff anastomosis alters wall shear stress distribution in the recipient artery.
    How TV; Rowe CS; Gilling-Smith GL; Harris PL
    J Vasc Surg; 2000 May; 31(5):1008-17. PubMed ID: 10805893
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of proximal artery flow on the hemodynamics at the distal anastomosis of a vascular bypass graft: computational study.
    Kute SM; Vorp DA
    J Biomech Eng; 2001 Jun; 123(3):277-83. PubMed ID: 11476372
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.