BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

303 related articles for article (PubMed ID: 8202550)

  • 1. Effective amplification of long targets from cloned inserts and human genomic DNA.
    Cheng S; Fockler C; Barnes WM; Higuchi R
    Proc Natl Acad Sci U S A; 1994 Jun; 91(12):5695-9. PubMed ID: 8202550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PCR amplification of up to 35-kb DNA with high fidelity and high yield from lambda bacteriophage templates.
    Barnes WM
    Proc Natl Acad Sci U S A; 1994 Mar; 91(6):2216-20. PubMed ID: 8134376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chimeric thermostable DNA polymerases with reverse transcriptase and attenuated 3'-5' exonuclease activity.
    Schönbrunner NJ; Fiss EH; Budker O; Stoffel S; Sigua CL; Gelfand DH; Myers TW
    Biochemistry; 2006 Oct; 45(42):12786-95. PubMed ID: 17042497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single-base discrimination mediated by proofreading 3' phosphorothioate-modified primers.
    Zhang J; Li K
    Mol Biotechnol; 2003 Nov; 25(3):223-8. PubMed ID: 14668536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long-range PCR with a DNA polymerase fusion.
    Hogrefe HH; Borns MC
    Methods Mol Biol; 2011; 687():17-23. PubMed ID: 20967598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amplification of 4-9-kb human genomic DNA flanking a known site using a panhandle PCR variant.
    Jones DH; Winistorfer SC
    Biotechniques; 1997 Jul; 23(1):132-8. PubMed ID: 9232245
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro amplification of DNA fragments greater than 10 kb.
    Kainz P; Schmiedlechner A; Strack HB
    Anal Biochem; 1992 Apr; 202(1):46-9. PubMed ID: 1535762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal conditions to use Pfu exo(-) DNA polymerase for highly efficient ligation-mediated polymerase chain reaction protocols.
    Angers M; Cloutier JF; Castonguay A; Drouin R
    Nucleic Acids Res; 2001 Aug; 29(16):E83. PubMed ID: 11504891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of a family B DNA polymerase from the hyperthermophilic crenarchaeon Ignicoccus hospitalis KIN4/I and its application to PCR.
    Seo KJ; Cho SS; Ppyun HW; Youn MH; Kim SH; Seo BS; Kwon ST
    Appl Biochem Biotechnol; 2014 Jul; 173(5):1108-20. PubMed ID: 24760610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Denaturants or cosolvents improve the specificity of PCR amplification of a G + C-rich DNA using genetically engineered DNA polymerases.
    Varadaraj K; Skinner DM
    Gene; 1994 Mar; 140(1):1-5. PubMed ID: 8125324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase.
    Saiki RK; Gelfand DH; Stoffel S; Scharf SJ; Higuchi R; Horn GT; Mullis KB; Erlich HA
    Science; 1988 Jan; 239(4839):487-91. PubMed ID: 2448875
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accessory proteins assist exonuclease-deficient bacteriophage T4 DNA polymerase in replicating past an abasic site.
    Blanca G; Delagoutte E; Tanguy le Gac N; Johnson NP; Baldacci G; Villani G
    Biochem J; 2007 Mar; 402(2):321-9. PubMed ID: 17064253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Polymerase chain reaction, cold probes and clinical diagnosis].
    Haras D; Amoros JP
    Sante; 1994; 4(1):43-52. PubMed ID: 7909267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong positional preference in the interaction of LNA oligonucleotides with DNA polymerase and proofreading exonuclease activities: implications for genotyping assays.
    Di Giusto DA; King GC
    Nucleic Acids Res; 2004 Feb; 32(3):e32. PubMed ID: 14973328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic amplification of DNA by PCR: standard procedures and optimization.
    Kramer MF; Coen DM
    Curr Protoc Cytom; 2006 Aug; Appendix 3():Appendix 3K. PubMed ID: 18770830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Cloning of the gene for thermostable Thermus aquaticus YT1 DNA polymerase and its expression in Escherichia coli].
    Patrushev LI; Valiaev AG; Golovchenko PA; Vinogradov SV; Chikindas ML; Kiselev VI
    Mol Biol (Mosk); 1993; 27(5):1100-12. PubMed ID: 8246933
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exonuclease-polymerase active site partitioning of primer-template DNA strands and equilibrium Mg2+ binding properties of bacteriophage T4 DNA polymerase.
    Beechem JM; Otto MR; Bloom LB; Eritja R; Reha-Krantz LJ; Goodman MF
    Biochemistry; 1998 Jul; 37(28):10144-55. PubMed ID: 9665720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct DNA sequence determination from total genomic DNA.
    Kilger C; Pääbo S
    Nucleic Acids Res; 1997 May; 25(10):2032-4. PubMed ID: 9115374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single base extension (SBE) with proofreading polymerases and phosphorothioate primers: improved fidelity in single-substrate assays.
    Di Giusto D; King GC
    Nucleic Acids Res; 2003 Feb; 31(3):e7. PubMed ID: 12560510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of long-distance PCR using a transposon-based model system.
    Ohler LD; Rose EA
    PCR Methods Appl; 1992 Aug; 2(1):51-9. PubMed ID: 1337007
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.