BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 8203247)

  • 1. Measurement of cochlear basilar membrane traveling wave velocity by derived ABR.
    Kim Y; Aoyagi M; Koike Y
    Acta Otolaryngol Suppl; 1994; 511():71-6. PubMed ID: 8203247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Derived-band auditory brain-stem response estimates of traveling wave velocity in humans: II. Subjects with noise-induced hearing loss and Meniére's disease.
    Donaldson GS; Ruth RA
    J Speech Hear Res; 1996 Jun; 39(3):534-45. PubMed ID: 8783132
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tone burst auditory brain stem response latency estimates of cochlear travel time in Meniere's disease, cochlear hearing loss, and normal ears.
    Murray JG; Cohn ES; Harker LA; Gorga MP
    Am J Otol; 1998 Nov; 19(6):854-9. PubMed ID: 9831168
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Derived band auditory brain-stem response estimates of traveling wave velocity in humans. I: Normal-hearing subjects.
    Donaldson GS; Ruth RA
    J Acoust Soc Am; 1993 Feb; 93(2):940-51. PubMed ID: 8445128
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of sensory hearing loss on cochlear filter times estimated from auditory brainstem response latencies.
    Don M; Ponton CW; Eggermont JJ; Kwong B
    J Acoust Soc Am; 1998 Oct; 104(4):2280-9. PubMed ID: 10491692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of Click and Swept-Tone Auditory Brainstem Response Results for Moderate and Severe Sensorineural Hearing Loss.
    Tan J; Luo J; Wang X; Jiang Y; Zeng X; Chen S; Li P
    Audiol Neurootol; 2020; 25(6):336-344. PubMed ID: 32906132
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A non-invasive, objective test of endolymphatic hydrops.
    Thornton AR; Farrell G; Haacke NP
    Acta Otolaryngol Suppl; 1991; 479():35-43. PubMed ID: 2068939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of stimulus rise time and high-pass masking on early auditory evoked potentials].
    Bunke D; von Specht H; Mühler R; Pethe J; Kevanishvili Z
    Laryngorhinootologie; 1998 Apr; 77(4):185-90. PubMed ID: 9592750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of auditory brainstem response on click polarity and high-frequency sensorineural hearing loss.
    Schoonhoven R
    Audiology; 1992; 31(2):72-86. PubMed ID: 1610315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An alternative diagnostic test for active Ménière's disease and cochlear hydrops using high-pass noise masked responses: the complex amplitude ratio.
    Don M; Kwong B; Tanaka C
    Audiol Neurootol; 2007; 12(6):359-70. PubMed ID: 17664867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cochlear processes affecting wave V latency of the auditory evoked brain stem response. A study of patients with sensory hearing loss.
    Yamada O; Kodera K; Yagi T
    Scand Audiol; 1979; 8(2):67-70. PubMed ID: 515691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Correlation of the latency shift and brain stem potentials in basocochlear hearing loss and the time course of the click stimulus-induced evoked wave in the cochlea].
    Janssen T; Steinhoff HJ; Böhnke F
    Laryngorhinootologie; 1989 Jul; 68(7):379-82. PubMed ID: 2765050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Auditory brainstem responses evoked by direct mechanical stimulation of the ossicular chain. Objective preoperative testing of candidates for implantable hearing aids].
    Hoth S; Lohaus M; Waldmann B
    HNO; 2003 Jul; 51(7):550-7. PubMed ID: 12904876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Apparent travelling wave velocity changes in cases of endolymphatic hydrops.
    Thornton AR; Farrell G
    Scand Audiol; 1991; 20(1):13-8. PubMed ID: 1842263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of lifetime noise exposure on the middle-age human auditory brainstem response, tinnitus and speech-in-noise intelligibility.
    Valderrama JT; Beach EF; Yeend I; Sharma M; Van Dun B; Dillon H
    Hear Res; 2018 Aug; 365():36-48. PubMed ID: 29913342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Difficulties experienced in implementing the ABR travelling wave velocity (Delta V) technique with two commercially available systems.
    Munro KJ; Smith R; Thornton AR
    Br J Audiol; 1995 Feb; 29(1):23-9. PubMed ID: 8580893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [A comparison of low-chirp- and notched-noise-evoked auditory brainstem response].
    Mühlenberg L; Schade G
    Laryngorhinootologie; 2012 Aug; 91(8):500-4. PubMed ID: 22135225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relationship between loudness intensity functions and the click-ABR wave V latency.
    Serpanos YC; O'Malley H; Gravel JS
    Ear Hear; 1997 Oct; 18(5):409-19. PubMed ID: 9360864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Infant air and bone conduction tone burst auditory brain stem responses for classification of hearing loss and the relationship to behavioral thresholds.
    Vander Werff KR; Prieve BA; Georgantas LM
    Ear Hear; 2009 Jun; 30(3):350-68. PubMed ID: 19322084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Travelling wave velocity test and Ménière's disease revisited.
    Claes GM; Wyndaele M; De Valck CF; Claes J; Govaerts P; Wuyts FL; Van de Heyning PH
    Eur Arch Otorhinolaryngol; 2008 May; 265(5):517-23. PubMed ID: 18172660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.