These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 8203247)
1. Measurement of cochlear basilar membrane traveling wave velocity by derived ABR. Kim Y; Aoyagi M; Koike Y Acta Otolaryngol Suppl; 1994; 511():71-6. PubMed ID: 8203247 [TBL] [Abstract][Full Text] [Related]
2. Derived-band auditory brain-stem response estimates of traveling wave velocity in humans: II. Subjects with noise-induced hearing loss and Meniére's disease. Donaldson GS; Ruth RA J Speech Hear Res; 1996 Jun; 39(3):534-45. PubMed ID: 8783132 [TBL] [Abstract][Full Text] [Related]
3. Tone burst auditory brain stem response latency estimates of cochlear travel time in Meniere's disease, cochlear hearing loss, and normal ears. Murray JG; Cohn ES; Harker LA; Gorga MP Am J Otol; 1998 Nov; 19(6):854-9. PubMed ID: 9831168 [TBL] [Abstract][Full Text] [Related]
4. Derived band auditory brain-stem response estimates of traveling wave velocity in humans. I: Normal-hearing subjects. Donaldson GS; Ruth RA J Acoust Soc Am; 1993 Feb; 93(2):940-51. PubMed ID: 8445128 [TBL] [Abstract][Full Text] [Related]
5. The effects of sensory hearing loss on cochlear filter times estimated from auditory brainstem response latencies. Don M; Ponton CW; Eggermont JJ; Kwong B J Acoust Soc Am; 1998 Oct; 104(4):2280-9. PubMed ID: 10491692 [TBL] [Abstract][Full Text] [Related]
6. Analysis of Click and Swept-Tone Auditory Brainstem Response Results for Moderate and Severe Sensorineural Hearing Loss. Tan J; Luo J; Wang X; Jiang Y; Zeng X; Chen S; Li P Audiol Neurootol; 2020; 25(6):336-344. PubMed ID: 32906132 [TBL] [Abstract][Full Text] [Related]
7. A non-invasive, objective test of endolymphatic hydrops. Thornton AR; Farrell G; Haacke NP Acta Otolaryngol Suppl; 1991; 479():35-43. PubMed ID: 2068939 [TBL] [Abstract][Full Text] [Related]
8. [Effect of stimulus rise time and high-pass masking on early auditory evoked potentials]. Bunke D; von Specht H; Mühler R; Pethe J; Kevanishvili Z Laryngorhinootologie; 1998 Apr; 77(4):185-90. PubMed ID: 9592750 [TBL] [Abstract][Full Text] [Related]
9. Dependence of auditory brainstem response on click polarity and high-frequency sensorineural hearing loss. Schoonhoven R Audiology; 1992; 31(2):72-86. PubMed ID: 1610315 [TBL] [Abstract][Full Text] [Related]
10. An alternative diagnostic test for active Ménière's disease and cochlear hydrops using high-pass noise masked responses: the complex amplitude ratio. Don M; Kwong B; Tanaka C Audiol Neurootol; 2007; 12(6):359-70. PubMed ID: 17664867 [TBL] [Abstract][Full Text] [Related]
11. Cochlear processes affecting wave V latency of the auditory evoked brain stem response. A study of patients with sensory hearing loss. Yamada O; Kodera K; Yagi T Scand Audiol; 1979; 8(2):67-70. PubMed ID: 515691 [TBL] [Abstract][Full Text] [Related]
12. [Correlation of the latency shift and brain stem potentials in basocochlear hearing loss and the time course of the click stimulus-induced evoked wave in the cochlea]. Janssen T; Steinhoff HJ; Böhnke F Laryngorhinootologie; 1989 Jul; 68(7):379-82. PubMed ID: 2765050 [TBL] [Abstract][Full Text] [Related]
13. [Auditory brainstem responses evoked by direct mechanical stimulation of the ossicular chain. Objective preoperative testing of candidates for implantable hearing aids]. Hoth S; Lohaus M; Waldmann B HNO; 2003 Jul; 51(7):550-7. PubMed ID: 12904876 [TBL] [Abstract][Full Text] [Related]
14. Apparent travelling wave velocity changes in cases of endolymphatic hydrops. Thornton AR; Farrell G Scand Audiol; 1991; 20(1):13-8. PubMed ID: 1842263 [TBL] [Abstract][Full Text] [Related]
15. Effects of lifetime noise exposure on the middle-age human auditory brainstem response, tinnitus and speech-in-noise intelligibility. Valderrama JT; Beach EF; Yeend I; Sharma M; Van Dun B; Dillon H Hear Res; 2018 Aug; 365():36-48. PubMed ID: 29913342 [TBL] [Abstract][Full Text] [Related]
16. Difficulties experienced in implementing the ABR travelling wave velocity (Delta V) technique with two commercially available systems. Munro KJ; Smith R; Thornton AR Br J Audiol; 1995 Feb; 29(1):23-9. PubMed ID: 8580893 [TBL] [Abstract][Full Text] [Related]
17. [A comparison of low-chirp- and notched-noise-evoked auditory brainstem response]. Mühlenberg L; Schade G Laryngorhinootologie; 2012 Aug; 91(8):500-4. PubMed ID: 22135225 [TBL] [Abstract][Full Text] [Related]
18. The relationship between loudness intensity functions and the click-ABR wave V latency. Serpanos YC; O'Malley H; Gravel JS Ear Hear; 1997 Oct; 18(5):409-19. PubMed ID: 9360864 [TBL] [Abstract][Full Text] [Related]
19. Infant air and bone conduction tone burst auditory brain stem responses for classification of hearing loss and the relationship to behavioral thresholds. Vander Werff KR; Prieve BA; Georgantas LM Ear Hear; 2009 Jun; 30(3):350-68. PubMed ID: 19322084 [TBL] [Abstract][Full Text] [Related]
20. Travelling wave velocity test and Ménière's disease revisited. Claes GM; Wyndaele M; De Valck CF; Claes J; Govaerts P; Wuyts FL; Van de Heyning PH Eur Arch Otorhinolaryngol; 2008 May; 265(5):517-23. PubMed ID: 18172660 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]