BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 8203496)

  • 1. NMR-sensitive fluorinated and fluorescent intracellular calcium ion indicators with high dissociation constants.
    London RE; Rhee CK; Murphy E; Gabel S; Levy LA
    Am J Physiol; 1994 May; 266(5 Pt 1):C1313-22. PubMed ID: 8203496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of cytosolic free calcium in perfused rat heart using TF-BAPTA.
    Murphy E; Steenbergen C; Levy LA; Gabel S; London RE
    Am J Physiol; 1994 May; 266(5 Pt 1):C1323-9. PubMed ID: 8203497
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New fluorescent calcium indicators designed for cytosolic retention or measuring calcium near membranes.
    Vorndran C; Minta A; Poenie M
    Biophys J; 1995 Nov; 69(5):2112-24. PubMed ID: 8580355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and characterization of 19F NMR chelators for measurement of cytosolic free Ca.
    Levy LA; Murphy E; London RE
    Am J Physiol; 1987 Apr; 252(4 Pt 1):C441-9. PubMed ID: 3105327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of proteins on [Ca2+] measurement: different effects on fluorescent and NMR methods.
    Matsuda S; Kusuoka H; Hashimoto K; Tsujimura E; Nishimura T
    Cell Calcium; 1996 Nov; 20(5):425-30. PubMed ID: 8955557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes of cytosolic Ca2+ interfere with measurements of cytosolic Mg2+ using mag-fura-2.
    Hurley TW; Ryan MP; Brinck RW
    Am J Physiol; 1992 Aug; 263(2 Pt 1):C300-7. PubMed ID: 1514577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 19F nuclear magnetic resonance studies of free calcium in heart cells.
    Gupta RK; Wittenberg BA
    Biophys J; 1993 Dec; 65(6):2547-58. PubMed ID: 8312491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of free Ca2+ in sarcoplasmic reticulum in perfused rabbit heart loaded with 1,2-bis(2-amino-5,6-difluorophenoxy)ethane-N,N,N',N'-tetraacetic acid by 19F NMR.
    Chen W; Steenbergen C; Levy LA; Vance J; London RE; Murphy E
    J Biol Chem; 1996 Mar; 271(13):7398-403. PubMed ID: 8631764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbachol-induced protein phosphorylation in parietal cells: regulation by [Ca2+]i.
    Brown MR; Chew CS
    Am J Physiol; 1989 Jul; 257(1 Pt 1):G99-110. PubMed ID: 2502025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potentiation of a slow Ca(2+)-dependent K+ current by intracellular Ca2+ chelators in hippocampal CA1 neurons of rat brain slices.
    Zhang L; Pennefather P; Velumian A; Tymianski M; Charlton M; Carlen PL
    J Neurophysiol; 1995 Dec; 74(6):2225-41. PubMed ID: 8747186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presynaptic calcium dynamics at the frog retinotectal synapse.
    Feller MB; Delaney KR; Tank DW
    J Neurophysiol; 1996 Jul; 76(1):381-400. PubMed ID: 8836232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New calcium-sensitive ligand for nuclear magnetic resonance spectroscopy.
    Robitaille PM; Jiang Z
    Biochemistry; 1992 Dec; 31(50):12585-91. PubMed ID: 1472494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New ratiometric fluorescent calcium indicators with moderately attenuated binding affinities.
    Gee KR; Archer EA; Lapham LA; Leonard ME; Zhou ZL; Bingham J; Diwu Z
    Bioorg Med Chem Lett; 2000 Jul; 10(14):1515-8. PubMed ID: 10915039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures.
    Tsien RY
    Biochemistry; 1980 May; 19(11):2396-404. PubMed ID: 6770893
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular calcium measurements by 19F NMR of fluorine-labeled chelators.
    Smith GA; Hesketh RT; Metcalfe JC; Feeney J; Morris PG
    Proc Natl Acad Sci U S A; 1983 Dec; 80(23):7178-82. PubMed ID: 6417665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding of iron and inhibition of iron-dependent oxidative cell injury by the "calcium chelator" 1,2-bis(2-aminophenoxy)ethane N,N,N',N'-tetraacetic acid (BAPTA).
    Britigan BE; Rasmussen GT; Cox CD
    Biochem Pharmacol; 1998 Feb; 55(3):287-95. PubMed ID: 9484794
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of 19F NMR for measurement of [Ca2+]i and [Pb2+]i in cultured osteoblastic bone cells.
    Schanne FA; Dowd TL; Gupta RK; Rosen JF
    Environ Health Perspect; 1990 Mar; 84():99-106. PubMed ID: 2112459
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fluorescent indicator for measuring cytosolic free magnesium.
    Raju B; Murphy E; Levy LA; Hall RD; London RE
    Am J Physiol; 1989 Mar; 256(3 Pt 1):C540-8. PubMed ID: 2923192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chelation of intracellular Ca2+ inhibits murine keratinocyte differentiation in vitro.
    Li L; Tucker RW; Hennings H; Yuspa SH
    J Cell Physiol; 1995 Apr; 163(1):105-14. PubMed ID: 7896886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of neutrophil elastase with hydrophobic polyanionic chelators.
    Tyagi SC; Simon SR
    Biochem Cell Biol; 1991 Sep; 69(9):624-9. PubMed ID: 1793563
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.