These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 8203562)

  • 1. Inhibition of Na+/Ca2+ exchange in renal BLMV by IP3 depends on site of action and direction of Ca2+ flux.
    Fraser CL; Cummings C; Cassafer G
    Am J Physiol; 1994 May; 266(5 Pt 2):F785-90. PubMed ID: 8203562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inositol 1,4,5-trisphosphate may regulate rat brain Cai++ by inhibiting membrane bound Na(+)-Ca++ exchanger.
    Fraser CL; Sarnacki P
    J Clin Invest; 1990 Dec; 86(6):2169-73. PubMed ID: 2174916
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regulation of plasma membrane-bound Ca(2+)-ATPase pump by inositol phosphates in rat brain.
    Fraser CL; Sarnacki P
    Am J Physiol; 1992 Mar; 262(3 Pt 2):F411-6. PubMed ID: 1532692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rapid interaction of FRCRCFa with the cytosolic side of the cardiac sarcolemma Na(+)-Ca2+ exchanger blocks the ion transport without preventing the binding of either sodium or calcium.
    Khananshvili D; Baazov D; Weil-Maslansky E; Shaulov G; Mester B
    Biochemistry; 1996 Dec; 35(49):15933-40. PubMed ID: 8961960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ouabain modulation of cellular calcium stores and signaling.
    Edwards A; Pallone TL
    Am J Physiol Renal Physiol; 2007 Nov; 293(5):F1518-32. PubMed ID: 17670901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic properties of the ATP-dependent Ca2+ pump and the Na+/Ca2+ exchange system in basolateral membranes from rat kidney cortex.
    van Heeswijk MP; Geertsen JA; van Os CH
    J Membr Biol; 1984; 79(1):19-31. PubMed ID: 6737462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sodium gradient-dependent calcium uptake in renal basolateral membrane vesicles. Effect of parathyroid hormone.
    Jayakumar A; Cheng L; Liang CT; Sacktor B
    J Biol Chem; 1984 Sep; 259(17):10827-33. PubMed ID: 6469984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence against parallel operation of sodium/calcium antiport and ATP-driven calcium transport in plasma membrane vesicles from kidney tubule cells.
    Schönfeld W; Menke KH; Schönfeld R; Repke KR
    Biochim Biophys Acta; 1984 Mar; 770(2):183-94. PubMed ID: 6320885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Na+-Ca2+ exchange and calcium permeability in canine basolateral membrane vesicles: the effects of dibutyryl cAMP and specific inhibitors.
    Scoble JE; Cragoe EJ; Hruska KA
    Biochim Biophys Acta; 1988 Oct; 944(2):233-41. PubMed ID: 2846057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium efflux in rat lens: Na/Ca-exchange related to cataract induced by selenite.
    Wang Z; Hess JL; Bunce GE
    Curr Eye Res; 1992 Jul; 11(7):625-32. PubMed ID: 1325893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium transport in canine renal basolateral membrane vesicles. Effects of parathyroid hormone.
    Scoble JE; Mills S; Hruska KA
    J Clin Invest; 1985 Apr; 75(4):1096-105. PubMed ID: 3988932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Na(+)-Ca2+ antiporter activity of rat hepatocytes. Effect of adrenalectomy on Ca2+ uptake and release from plasma membrane vesicles.
    Studer RK; Borle AB
    Biochim Biophys Acta; 1992 Feb; 1134(1):7-16. PubMed ID: 1543758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ins(1,4,5)P3 induces Ca2+ release from brain microsomes loaded either by the Ca2+ ATPase or by the Na+/Ca2+ exchanger.
    Cristóvão AJ; Carvalho CA
    Cell Signal; 1992 Nov; 4(6):687-96. PubMed ID: 1489660
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of exchange inhibitory peptide effects on Na+/Ca2+ exchange in rat and human brain plasma membrane vesicles.
    Wu A; Colvin RA
    J Neurochem; 1994 Dec; 63(6):2136-43. PubMed ID: 7964733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of Na(+)-Ca2+ exchange activity in plasma membrane vesicles from postmortem human brain.
    Hoel G; Michaelis ML; Freed WJ; Kleinman JE
    Neurochem Res; 1990 Sep; 15(9):881-7. PubMed ID: 1703282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Calcium regulation by lens plasma membrane vesicles.
    Galvan A; Louis CF
    Arch Biochem Biophys; 1988 Aug; 264(2):472-81. PubMed ID: 2840857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incorporation of Na+ - Ca2+ antiporter and of (Na+ + K+)-ATPase into liposomes and demonstration of their non-identity.
    Eckert K; Grosse R
    Biochim Biophys Acta; 1982 Oct; 692(1):69-80. PubMed ID: 6293560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stimulation of ATP-driven Ca2+ pump in the basal-lateral plasma membranes of kidney cortex during compensatory renal growth.
    Hadzić A; Sabolić I; Banfić H
    Biochim Biophys Acta; 1990 Mar; 1022(3):265-72. PubMed ID: 2156554
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Na(+)-Ca2+ exchange activity in central nerve endings. II. Relationship between pharmacological blockade by amiloride analogues and dopamine release from tuberoinfundibular hypothalamic neurons.
    Taglialatela M; Canzoniero LM; Cragoe EJ; Di Renzo G; Annunziato L
    Mol Pharmacol; 1990 Sep; 38(3):393-400. PubMed ID: 2402228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alzheimer's amyloid-beta peptide inhibits sodium/calcium exchange measured in rat and human brain plasma membrane vesicles.
    Wu A; Derrico CA; Hatem L; Colvin RA
    Neuroscience; 1997 Oct; 80(3):675-84. PubMed ID: 9276485
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.