BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 8203591)

  • 1. Effect of chronic renal medullary nitric oxide inhibition on blood pressure.
    Mattson DL; Lu S; Nakanishi K; Papanek PE; Cowley AW
    Am J Physiol; 1994 May; 266(5 Pt 2):H1918-26. PubMed ID: 8203591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of renal medullary blood flow in the development of L-NAME hypertension in rats.
    Nakanishi K; Mattson DL; Cowley AW
    Am J Physiol; 1995 Feb; 268(2 Pt 2):R317-23. PubMed ID: 7864223
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local renal medullary L-NAME infusion enhances the effect of long-term angiotensin II treatment.
    Szentiványi M; Maeda CY; Cowley AW
    Hypertension; 1999 Jan; 33(1 Pt 2):440-5. PubMed ID: 9931144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen-radical regulation of renal blood flow following suprarenal aortic clamping.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2006 Mar; 43(3):577-86. PubMed ID: 16520177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protective effect of angiotensin II-induced increase in nitric oxide in the renal medullary circulation.
    Zou AP; Wu F; Cowley AW
    Hypertension; 1998 Jan; 31(1 Pt 2):271-6. PubMed ID: 9453315
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iodinated contrast induced renal vasoconstriction is due in part to the downregulation of renal cortical and medullary nitric oxide synthesis.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2006 Aug; 44(2):383-91. PubMed ID: 16890873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suprarenal aortic clamping and reperfusion decreases medullary and cortical blood flow by decreased endogenous renal nitric oxide and PGE2 synthesis.
    Myers SI; Wang L; Liu F; Bartula LL
    J Vasc Surg; 2005 Sep; 42(3):524-31. PubMed ID: 16171601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of nitric oxide synthase 1 on blood flow and interstitial nitric oxide in the kidney.
    Kakoki M; Zou AP; Mattson DL
    Am J Physiol Regul Integr Comp Physiol; 2001 Jul; 281(1):R91-7. PubMed ID: 11404282
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular transport of l-arginine determines renal medullary blood flow in control rats, but not in diabetic rats despite enhanced cellular uptake capacity.
    Persson P; Fasching A; Teerlink T; Hansell P; Palm F
    Am J Physiol Renal Physiol; 2017 Feb; 312(2):F278-F283. PubMed ID: 27927650
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of renal medullary circulation on arterial pressure.
    Cowley AW; Roman RJ; Fenoy FJ; Mattson DL
    J Hypertens Suppl; 1992 Dec; 10(7):S187-93. PubMed ID: 1291653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renal intramedullary infusion of L-arginine prevents reduction of medullary blood flow and hypertension in Dahl salt-sensitive rats.
    Miyata N; Cowley AW
    Hypertension; 1999 Jan; 33(1 Pt 2):446-50. PubMed ID: 9931145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Renal cortical and medullary blood flow responses to L-NAME and ANG II in wild-type, nNOS null mutant, and eNOS null mutant mice.
    Mattson DL; Meister CJ
    Am J Physiol Regul Integr Comp Physiol; 2005 Oct; 289(4):R991-7. PubMed ID: 15961532
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitric oxide and prostanoids protect the renal outer medulla from radiocontrast toxicity in the rat.
    Agmon Y; Peleg H; Greenfeld Z; Rosen S; Brezis M
    J Clin Invest; 1994 Sep; 94(3):1069-75. PubMed ID: 8083347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of nitric oxide in renal papillary blood flow and sodium excretion.
    Mattson DL; Roman RJ; Cowley AW
    Hypertension; 1992 Jun; 19(6 Pt 2):766-9. PubMed ID: 1592478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide influences blood flow distribution in renovascular hypertension.
    Sigmon DH; Beierwaltes WH
    Hypertension; 1994 Jan; 23(1 Suppl):I34-9. PubMed ID: 8282373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between nitric oxide and angiotensin II on renal cortical and papillary blood flow.
    Madrid MI; García-Salom M; Tornel J; de Gasparo M; Fenoy FJ
    Hypertension; 1997 Nov; 30(5):1175-82. PubMed ID: 9369273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitric oxide buffers renal medullary vasoconstriction induced by prostaglandins synthesis blockade.
    Nakanishi K; Chinen A; Saito Y; Hamada K; Hara N; Nagai Y
    Hypertens Res; 2001 Nov; 24(6):699-704. PubMed ID: 11768730
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Salt-sensitive hypertension in conscious rats induced by chronic nitric oxide blockade.
    Nakanishi K; Hara N; Nagai Y
    Am J Hypertens; 2002 Feb; 15(2 Pt 1):150-6. PubMed ID: 11863250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of nitric oxide in the control of the renal medullary circulation.
    Mattson DL; Lu S; Cowley AW
    Clin Exp Pharmacol Physiol; 1997 Aug; 24(8):587-90. PubMed ID: 9269532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of nitric oxide inhibition on the renal papillary blood flow response to saline-induced volume expansion in the rat.
    Atucha NM; Ramírez A; Quesda T; García-Estañ J
    Clin Sci (Lond); 1994 Apr; 86(4):405-8. PubMed ID: 8168334
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.